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Abstract 

The integration of Global Positioning System (GPS) measurements into the 

navigation systems of Air Force aircraft has enhanced their accuracy. These increas- 

ingly accurate new aircraft navigation systems require the Air Force to continually 

improve its navigation reference system in order to accurately test them. The new 

Air Force navigation reference system under development, the Submeter Accuracy 

Reference System (SARS), will achieve the necessary accuracy with carrier phase 

GPS technology. The SARS is an inverted GPS system which consists of an array 

of GPS receivers on the ground and an airborne pseudolite mounted on the aircraft 

whose navigation system is to be tested. The SARS will provide a proof position es- 

timate that is used to check the navigation system under test. Unfortunately, ground 

based inverted GPS systems such as the SARS tend to suffer from high geometric 

sensitivity to measurement errors. The SARS has the potential to attain the level 

of accuracy required, provided the measurement geometry is chosen to minimize the 

SARS' sensitivity to measurement errors. This research tackles the problem of opti- 

mizing the SARS' receiver array configuration to minimize the system's sensitivity 

to pseudorange errors, thus enhancing the position reference produced. The analysis 

determines that the proper choice of cost function for the optimization is the con- 

dition number of the visibility matrix H, rather than the commonly used GDOP. 

Insight into the problem is provided by a graphical technique for evaluating receiver 

array geometry. Moreover, two receiver array numerical optimization programs are 

developed. The results of the receiver array optimization programs show that the 

geometric sensitivity to error in the SARS airspace can be reduced to acceptable 

levels through proper array design. Several good receiver array designs are shown. 

Finally, a technique for further reducing the geometric sensitivity of the SARS is 

discussed. 
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OPTIMIZATION OF A GPS-BASED NAVIGATION REFERENCE 

SYSTEM 

/.   Introduction 

1.1    Background 

The integration of GPS, a satellite based radio-navigation system, with In- 

ertial Navigation Systems (INS) has produced highly accurate aircraft navigation 

systems. As the performance of aircraft navigation systems continues to improve, 

the Air Force must develop a more accurate means of flight testing them. The cur- 

rent method of flight testing an aircraft's navigation system consists of placing a 

Navigation Reference System (NRS) onboard the aircraft and comparing the perfor- 

mance of the aircraft's navigation system to the performance of the reference system. 

For this to work, the NRS needs to be significantly more accurate than the system 

under test, and it needs to be able to fit somewhere onboard the aircraft. The cur- 

rent NRS does not meet either of those two requirements. The current NRS is not 

significantly more accurate than some of the new systems being tested. It is also 

too big to be fit onboard many Air Force aircraft, such as fighter and reconnaissance 

aircraft. Accordingly, the Air Force is developing a new NRS that does satisfy the 

accuracy and size requirements. 

The new Air Force navigation test reference system, under development at 

the Central Inertial Guidance Test Facility (CIGTF) at Holloman AFB, NM, is the 

Submeter Accuracy Reference System (SARS). This reference system is especially 

designed for flight testing integrated navigation systems. The system uses carrier 

phase GPS technology to obtain the high accuracy needed to test the integrated 

navigation systems of high performance aircraft. It does not use the GPS satellites, 
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but instead puts a pseudolite (GPS transmitter) on the test aircraft and uses an array 

of GPS receivers on the ground at surveyed locations. The transmitter and receivers 

can be set to a different frequency band than the GPS satellites, making the SARS 

a navigation reference independent of the GPS satellites. Since a pseudolite is small 

enough to be mounted on any Air Force aircraft, the SARS can be used to flight 

test any aircraft's navigation system. The SARS has undergone preliminary testing 

which has validated the concept [17], but did not achieve the the level of accuracy 

necessary to accurately test the Air Force's newer aircraft navigation systems. It is 

desired to increase the accuracy of the SARS, to enable it to be used as an accurate 

proof reference of position. 

The desired increase in accuracy of the SARS can be obtained by improving 

the accuracy of the GPS technology used in the system. As GPS is already highly 

accurate (and complicated), the factors that impact GPS accuracy and, more im- 

portantly, the techniques for further improving GPS accuracy may not be intuitive. 

Fortunately, there is currently a lot of interest in GPS, so this effort to improve the 

accuracy of the SARS need not be conducted in a vacuum. There is a large amount 

of pertinent information in the literature that has been useful in choosing the direc- 

tion of this research. The following literature review examines the current factors 

that pertain to improving the accuracy of GPS-based navigators, identifies possible 

directions of research towards improving the SARS' accuracy, and determines the 

most promising direction of research. 

1.2    Literature Review 

The first step in this thesis is to look at the current body of GPS knowledge 

and design techniques to see what ideas can be found for improving the accuracy of 

the SARS. This literature review has two main objectives: determining the factors 

that impact GPS system accuracy and identifying promising directions of research 

from that information. To put the material into context, the basic concepts of GPS 
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are outlined in the following section. Once the basic concepts are established, the 

two main objectives are discussed. Within the discussions, the factors affecting GPS 

accuracy are outlined, their relevance to the SARS' configuration is examined, and 

their impact on the direction of my research is summarized. Although there is a large 

body of information on both topics, the ground based configuration of the SARS is 

sufficiently different from satellite based GPS to cause much of the literature to have 

limited applicability. Therefore, this review sifts through the current state of GPS 

knowledge to find what can be applied to my research. 

1.2.1 Basic Concepts of GPS. The Global Positioning System (GPS) is a 

radionavigation system that uses time-difference-of-arrival measurements on signals 

transmitted from reference stations to determine user position and velocity. In stan- 

dard, satellite-based GPS, the reference stations are satellites in precisely controlled 

12 hour orbits. The satellites transmit time tagged, coded data down to earth, where 

the user, a GPS receiver in this case, receives the signals and calculates its position. 

In the SARS, the configuration is reversed. In SARS, the reference stations are re- 

ceivers at known locations on the ground at the navigation system flight test range, 

and the user is an aircraft outfitted with a GPS transmitter (a pseudolite). In both 

cases, the same techniques are used to solve the navigation equations, but the con- 

figuration of the SARS is sufficiently different from the satellite-based GPS to make 

much of the current literature not applicable. 

1.2.2 Factors That Affect GPS Accuracy. Many factors affect the accuracy 

of GPS systems. For discussion purposes, these factors are lumped into four overall 

groups: the GPS error sources, the system geometry, modeling, and data processing. 

Although all of these factors affect GPS accuracy, they may have a different impact 

on the SARS system than on standard GPS, due to the ground-based configuration 

of the SARS. 
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1.2.2.1 GPS Error Sources. The many errors that corrupt the GPS 

navigation solution are a big factor that impacts GPS system accuracy. In an 

overview of the principles of the GPS system, Milliken et al. list seven basic sources 

of GPS system errors: satellite (reference station) clock errors, atmospheric delays, 

group delay, ephemeris (reference station position) errors, multipath errors, receiver 

noise and resolution, and receiver (user) vehicle dynamics [14]. Since the GPS equip- 

ment used to implement the SARS is essentially the same as that used for satellite 

GPS, it seems likely that the sources of error for the SARS will be similar to those 

for satellite-based GPS. However, a review of previous AFIT research on the SARS 

concept indicates that some of the sources of error may be different, or at least of 

different relative importance for the SARS, because the SARS uses no space based 

equipment [7]. 

Significant differences in error sources seem likely in these areas: atmospheric 

delays, ephemeris errors, multipath errors, receiver noise/resolution, and receiver 

vehicle dynamics. First, the atmospheric delays will be much smaller for the SARS 

case, because the distance between the receivers and the transmitters will be very 

short, compared to the distances involved in satellite GPS. Also, the SARS signals 

will not have to go through the ionosphere, reducing overall signal distortion. Second, 

the ephemeris (GPS reference station position) errors will be different, as it is possible 

to determine the location of ground based receivers (SARS' reference stations) much 

more accurately than the location of satellites. In fact, the ground based receiver 

array could use the GPS satellites over a course of days to pinpoint the location of 

each receiver to the extreme limit of possible accuracy. This quite possibly could all 

but eliminate ephemeris (reference station position) errors in the SARS. Third, the 

multipath errors could be different in the SARS. Multipath errors are due to signal 

reflections, and waveguide effects of the atmosphere that affect signal transit time 

(different paths with different transit times). In the SARS, reflections off the ground 

seem likely to dominate the multipath errors, because there are many receivers on 
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the ground (that could receive reflected signals), and the short distances between 

the transmitter and the receivers would tend to minimize waveguide effects. Fourth, 

receiver noise and receiver resolution may be much more important to the SARS. 

Chaffee and Abel, in their work on a closed form solution to the pseudorange (GPS 

measurement) equations, state that the noise to pseudorange ratio is larger, the closer 

together the transmitter and receiver are [4]. With the short distances used in the 

SARS range, this could be a problem. Lastly, the user vehicle dynamics could have 

a different impact on the SARS than if the satellites were used. This is because the 

distances between the reference stations and user are so much smaller in the SARS. 

Changes in the user position that would have no impact on the effective geometry of 

the configuration if satellites were used could drastically change the effective system 

geometry of the SARS. As the geometry of the configuration affects the impact the 

error sources have on the navigation accuracy [7,14,17], this problem is critical to 

the design of the SARS. 

Looking at the possible differences in error sources of the SARS, compared 

to satellite GPS, one can see that the error characteristics of the SARS may prove 

quite different from satellite GPS, even though the hardware and data processing 

techniques are common in both systems. This points out that blindly applying 

standard satellite GPS technology to the SARS, without considering the differences 

in the systems' error sources, could lead to degraded performance. 

1.2.2.2 System Geometry. The second factor that affects GPS accu- 

racy is the system geometry. The geometry of the system means the orientation of 

the reference stations to each other and to the user. Note that this does depend on 

the position of the user relative to the array of reference stations, as well as the con- 

figuration of the reference station array itself. The geometry of the system has been 

shown to impact the mapping of measurement errors to position errors in the naviga- 

tion solution [14,17]. The standard measure in the literature of geometric sensitivity 

is the Geometric Dilution of Precision (GDOP). This GDOP is a rough measure 
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of the scaling effect that the geometry has on the measurement errors. When the 

geometry is good, the GDOP and the system's geometric sensitivity to measurement 

errors are low. When the geometry is poor, the GDOP and the system's geometric 

sensitivity can become quite high. 

In the literature, 'good' geometry (for the satellites) has been related to the 

three dimensional volume of a tetrahedron formed from the unit vectors drawn from 

the user position along the directions of the straight line paths between the user 

and each reference station [14]. This definition of good geometry breaks down when 

more than the minimum of four reference stations are used at one time, but the gist 

of the idea is that the more space enclosed by the 'connect the dot' figure formed 

out of the user and receiver positions, the 'better' the geometry. 

In the SARS design, although the geometry has the same impact on GPS 

accuracy as in the satellite case, there is not nearly as much freedom to choose 

reference station locations as there is with the satellites. By design, the geometry 

of satellite GPS is rather good for terrestrial users. This is not so for the SARS. 

All the reference stations for the SARS will essentially be located on the ground. 

Looking at the 'good' geometry definition for the satellite case, it would seem that 

the SARS configuration cannot avoid poor geometry, as was reported in the concept 

testing [17]. Given that, a major goal of this research is to figure out the best possible 

configuration for the receiver array, to minimize this problem of 'poor' geometry. 

1.2.2.3 Modeling. The next factor that affects GPS system accuracy 

is the modeling of GPS errors and user dynamics. Through sophisticated filtering 

and estimation techniques, it is possible to ameliorate the effects of GPS errors and 

receiver problems due to user dynamics [5]. To do this, statistical models of the GPS 

errors and vehicle dynamics need to be formed. Much work in this area has been done 

at AFIT as well as many other institutions, resulting in a proliferation of models for 

both GPS errors and user dynamics  [6,8,16,19,21-23]. Once the models are formed, 
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and are proven in use, they tend to get programmed into the GPS user equipment 

and processing software. This simplifies applying the GPS to a new problem, but 

may cause trouble with the SARS, because the error behavior may be quite different, 

as was previously discussed. Fortunately, the user models do not share this problem. 

While better user trajectory modeling and estimation would undoubtedly improve 

the SARS' performance, there already exist proven kinematic user models that aid in 

accurate trajectory determination from GPS measurements [19]. Therefore, it seems 

likely that a large scale modeling effort is not warranted, but some thought does need 

to be given to the validity of the GPS error models used in the processing of the 

SARS data. As an example, most GPS receivers use a model of atmospheric delays to 

attempt to compensate for the effect of the atmosphere on the signals. If the standard 

GPS atmospheric models are used in the SARS, the receivers could over-compensate 

for the atmospheric errors actually present in the data, because in the SARS, the 

signals do not pass through the upper atmosphere or the ionosphere, where the 

majority of the distortion takes place. This overcompensation could diminish the 

system's accuracy. What this means is that the satellite-based GPS error models 

cannot be blindly transferred over to the SARS. The models need to be tailored to 

the SARS application. 

1.2.2.4    Data Processing. The last main factor in GPS system ac- 

curacy is the way that the measurement data is processed to determine the user 

position or trajectory. There are only two kinds of measurements out of the GPS 

receiver (pseudorange and carrier beat frequency), but there are countless numbers 

of methods for using these measurements to determine the user's trajectory [3]. Al- 

though a detailed discussion of these methods is beyond the scope of this research, 

the basic concepts deserve to be mentioned. 

The three basic areas where data processing affects GPS accuracy are the way 

the GPS measurements are used, the way the GPS measurements are filtered to 
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remove errors, and the method used to solve the navigation equations. Each of these 

areas can have significant impact on the accuracy of the GPS system. 

The basic methods of using the GPS measurements are called code-phase and 

carrier phase GPS. Code phase GPS uses only pseudorange measurements to solve 

for user position. Without differencing, this technique attains an accuracy window 

of about fifty feet. This is simply not good enough for the SARS. Fortunately, much 

work has been done on improved use of the measurement data to allow greater ac- 

curacy. The best current method for using the GPS measurements is called carrier 

phase GPS. In this method, the pseudoranges are used to obtain the fifty foot ball- 

park solution. Then, the carrier beat frequency measurement is used to estimate 

the total phase of the carrier wavefront from the receiver to the transmitter, locat- 

ing the user position within the ballpark solution found using the pseudoranges [9]. 

This method can produce accuracies on the centimeter level, provided the estimator 

maintains 'lock' on the carrier phase. Obviously, given its potential high accuracy, 

carrier phase GPS will be used in the SARS, and has shown great promise in the 

initial testing at Holloman [17] and in follow on research at AFIT [2,7]. 

There are several methods used to filter the errors out of the GPS measure- 

ments. Two standard techniques are error state estimation and differencing tech- 

niques. The error estimation techniques use models for the GPS errors to estimate 

the errors through Kaiman filtering, and then remove the estimated errors from the 

measurements [11-13]. This kind of technique is very powerful given good models, 

but as was stated earlier, poor modeling can be worse than none at all. The models 

used had better be accurate. The differencing techniques involve taking measure- 

ments from adjacent receivers and transmitters, and differencing them to remove 

common errors. This kind of technique has proven effective in reducing GPS errors, 

and has been used in the concept testing of the SARS [17]. In most GPS appli- 

cations, sophisticated differencing techniques cannot be used because of the need 

for real-time navigation capability.  Fortunately, since the SARS data will be post- 
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processed anyway for greater accuracy, differencing techniques for error removal can 

and will be used. For a complete description of carrier phase GPS differencing tech- 

niques evaluated for SARS use, see the works of Bohenek [2], Hebert [7], and Raquet, 

et al [17]. 

The final area where data processing affects the GPS accuracy is the method 

used in solving the non-linear navigation equations. In the standard GPS receivers, 

the navigation equations are solved using linearized equations and an iterative ap- 

proach that converges on the solution. This iterative approach has proven successful 

for terrestrial navigation using the GPS satellites, but additional accuracy in regions 

of poor geometry (like the SARS) may be obtained by using a closed-form solution to 

the GPS navigation equations, as outlined in Bancroft's paper on the subject [1]. In 

fact, the closed form solution has already been used in GPS testing on ground based 

systems [18]. There, it was used to initialize the navigation and error estimation 

filters, as the closed form solution requires no initial a priori position information. 

This made the closed form solution an independent measurement suitable for up- 

dating the navigation filters. For the SARS, this closed form solution may be useful 

for two reasons. The first reason is that the closed form solution avoids convergence 

problems the iterative solution has in areas of poor geometry. The second reason 

is that the closed form solution may prove somewhat less sensitive to configuration 

geometry, obtaining greater accuracy in regions of high GDOP [1]. 

1.2.3 Promising Directions of Research. Now that the factors that affect 

GPS accuracy have been discussed, promising directions of research into improving 

GPS accuracy can be explored. The discussion of GPS accuracy suggests three pos- 

sible areas of improvement: optimizing the GPS receiver array geometry, improving 

the SARS' GPS error models, and using the closed form solution to the navigation 

equations. Additionally, my exposure to navigation systems here at AFIT has sug- 

gested another possibility: aiding the SARS system with an additional (non GPS) 

sensor, such as a radar altimeter. -) 
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1.2.3.1 Optimizing the SARS Geometry. As discussed previously, 

the configuration of the reference stations and the user will impact the system's 

sensitivity to GPS errors. Therefore, it is desirable to optimize the placement of 

the reference stations on the ground (and the user flight profile) to minimize this 

sensitivity. Unfortunately, there does not seem to be any hard and fast design 

rule to use in such an optimization. What little information on this subject that 

appears in the literature has pertained to the satellites, and has not proven useful 

in ground based array (and user flight profile) optimization. Since the geometry will 

have such an impact on the SARS, and not much information on optimizing the 

geometry appears in the literature, it follows that research along this direction could 

prove quite useful in improving the accuracy of the SARS, by improving the choice 

of reference station locations on the ground and also the test flight profile. This 

optimization of geometry seems to be the most promising direction of research. 

1.2.3.2 GPS Error Models. Another promising direction of research 

is refining the models used in the SARS. As previously discussed, there exist kine- 

matic GPS models that can be used with carrier phase GPS to accurately determine 

the user trajectory. However, the validity of the models used for the GPS errors in 

the SARS data needs to be examined. If it indeed turns out that some of the error 

models used in the SARS right now are not valid, research should be done to refine 

them. From the discussion of the GPS error models, it looks like modeling improve- 

ments could be obtained in several ways: eliminating the ionospheric correction, 

modifying the atmospheric delay models to account for reduced signal path length, 

investigating the multipath errors, accounting for the larger noise to pseudorange 

ratio, and perhaps tuning the receiver models more 'tightly,' as all the receivers will 

be stationary. This modeling effort could yield some improvements in accuracy, but 

is likely to be of secondary importance compared to the SARS' geometry. There- 

fore, while refining the SARS models should be done to ensure highest accuracy, the 

research time seems better spent on the geometry optimization. 
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1.2.3.3 Use the Closed Form Navigation Equations. The third promis- 

ing direction of research is investigating the benefits of using the closed form navi- 

gation equations. Bancroft states that using the nonlinear closed form solution has 

shown to be more accurate than the usual linear iterative technique used in most 

GPS algorithms, in regions of high GDOP [1]. This higher accuracy could make 

the closed form solution worth trying out in the SARS. Since all the data is post- 

processed anyway, trying out the closed form solution would be a simple matter of 

replacing a few lines of code in the program that executes the navigation equations. 

If increased accuracy around the poor GDOP regions of the SARS could be obtained, 

the useful area of the test range for flight testing purposes could be extended, and 

the flight profiles used would be less constrained. As converting to the closed form 

solution is such a simple change to the algorithm, it does not make sense not to try 

it out. 

1.2.3.4 Use an Additional Sensor. If all else fails, a traditional 

method could be used to increase the system accuracy: aid the SARS with an addi- 

tional (non GPS) sensor. It is desired to avoid this method, as it increases system 

complexity and adds to the hardware needed onboard the test aircraft. If nothing 

else has enabled the SARS to achieve its .1 meter or better accuracy goal, then aiding 

the SARS with an additional sensor would be worth investigating. 

If this method is required, the problem then becomes deciding what kind of 

sensor(s) should be used. The carrier phase GPS measurements used in the SARS 

are highly accurate, much more so than most other sensors. Theoretically, any 

additional (accurate) information provided to the navigation solution should result 

in improved accuracy of the solution, but if the additional information is much less 

accurate, any improvements would be negligible. If properly modeled, the use of 

a sensor much less accurate than carrier phase GPS could still improve the SARS' 

accuracy, by reducing the GDOP. In this case, the addition of errors caused by the 

inaccurate sensor might be outweighed by the reduction in total error amplification 
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gained by reducing the GDOP. Unfortunately, the chances of introducing error into 

the system would be significant, no matter what additional sensor is used, so an 

extensive validation effort would be needed to see if indeed any improvements were 

realized by the introduction of the sensor. Therefore, aiding the SARS with a non 

GPS sensor will not be investigated unless absolutely necessary. 

1.2.4 Conclusion of Literature Review. This review has helped to obtain 

a clearer view of the research objective of improving the accuracy of GPS measure- 

ments at the SARS by identifying the factors that affect GPS accuracy and exploring 

possible directions for the research effort. The literature suggests that there are four 

main factors which affect GPS accuracy: GPS system errors, GPS system geome- 

try, modeling, and data processing. Promising directions of research in these areas 

are optimizing the GPS system geometry, refining the SARS' error models, and 

using the closed form solution to the pseudorange equations. Out of these, the most 

promising looks to be optimizing the SARS' geometry. This thesis will concentrate 

on optimizing the SARS' geometry, leaving other possible improvements as topics 

for future research. 

1.3    Problem Definition 

The goal of this thesis is to improve the accuracy and usefulness of the SARS 

by optimizing the receiver locations to minimize geometric sensitivity. In the pro- 

cess of solving this problem, the geometric sensitivity of ground based arrays will be 

investigated and receiver array optimization tools will be developed. The knowledge 

and techniques from this preliminary research will allow the receiver array optimiza- 

tion problem to be solved and will provide CIGTF with a systematic method with 

which to optimize the SARS with respect to measurement geometry, allowing the 

SARS to be reconfigured whenever it is required. 
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1.4 Scope 

Although there are many factors that affect the accuracy of an inverted GPS 

system like the SARS, only the geometry induced error sensitivity of the solutions 

to the pseudorange equations is addressed in this research. Such concerns as carrier 

phase ambiguity estimation, modelling of GPS errors, and data processing will not 

be addressed. 

The work will be limited to: 

f.  The analysis and comparison of several measures of geometric sensitivity. 

2. The development of MATLAB [fO] programs to aid in the optimization and 

evaluation of inverted GPS receiver arrays. 

3. The application of the developed software to the SARS' receiver array opti- 

mization problem. 

4. The synthesis of the above research into a list of guidelines for good receiver 

placement for ground based receiver arrays. 

1.5 Assumptions 

This list shows the assumptions that were made to allow the research to focus 

in on the system geometry, as opposed to the many other considerations involved 

with carrier phase GPS. 

f. Since this research is mainly geometry oriented, it is assumed that no 'cycle 

slips' occur in the carrier phase GPS measurements. Cycle slips are errors 

in the estimate of the number of carrier wavelengths (cycles) between the re- 

ceiver and the transmitter [9]. These errors do impact the accuracy of carrier 

phase GPS, but the design of methods to detect and compensate for cycle slips 

is beyond the scope of this research.   Cycle slip detection and compensation 
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techniques are discussed in the work of Bohenek [2]. Failure detection and com- 

pensation for GPS systems in general are discussed in the works of Mosle [15] 

and Vasquez [23]. 

2. Line of sight (LOS) from the transmitter to the receivers is assumed through 

most of this research. The reason why is that the LOS check developed for this 

research in MATLAB is extremely slow; it simply takes too long to be of use. 

Unfortunately, since the terrain around CIGTF is mountainous, the assumption 

of unbroken LOS throughout the entire flight may be questionable. Therefore, 

the LOS check (as slow as it is) is used several times throughout the research 

to check this assumption. 

3. GPS errors like multipath etc. are not modelled in this research. They are 

assumed to be independent of the array geometry. 

4. The curvature of the earth is ignored. Over the 50-100 mile extent of the 

SARS, the curvature of the earth will not have a significant effect. 

5. The terrain is not taken into account for the main body of this research. Al- 

though elevation data for White Sands Missile Range is available, much of the 

research may be more easily done using a completely flat ground plane. It is 

felt that the development of the receiver array optimization tools will be more 

straightforward if the ground is assumed to be completely flat. Then, once 

the tools are developed, the elevation data will be used to see how much the 

altitude variations in terrain change the results. 

6. There are no restrictions on where the receivers can go, except the boundaries 

of the test range. Although there surely are places inside the range where the 

receivers cannot go, most likely such places are small enough in extent that 

they can safely be ignored. 

7. The range limits of the transmitter-receiver link are not incorporated into this 

research.   The GPS transmitters and receivers used in the SARS are being 
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custom made for this application. It is assumed that they will prove adequate 

for the task. If not, a penalty on exceeding the range limits can easily be 

incorporated into the receiver array design tools. 

1.6    Methodology 

The two main steps to this research are shown in sections 1.6.1 and 1.6.2. Step 

one must be completed before step two can be begun. Although the results of step 

two will most likely benefit CIGTF the most, the results of both steps will be equally 

important to this thesis. 

1.6.1 Step 1: Preliminary Research. Before the receiver array geometry 

optimization problem can be solved, the geometric sensitivity of the SARS must be 

analyzed and receiver array optimization tools developed. The analysis of geomet- 

ric sensitivity is to better characterize the GDOP function and to explore alternate 

measures of geometric sensitivity that may be more meaningful than the GDOP. 

This analysis is the hrst order of business. Once it is done, the best measure of 

geometric sensitivity will be chosen for use in the optimization tools. The devel- 

opment of receiver array optimization tools is the next order of business. Three 

optimization tools will be developed and tested: a graphical technique for evaluating 

receiver array geometry, a Monte Carlo search program to help hnd the best receiver 

locations, and a systematic receiver array optimization program using constr.m: a 

Sequential Quadratic Programming (SQP) constrained optimization program from 

the MATLAB Optimization Toolbox. Once the right measure of geometric sensitiv- 

ity is found, these three optimization tools will be developed and then put to work 

on the SARS' receiver array optimization problem. 

1.6.2 Step 2: Receiver Array Optimization. The second and hnal step in 

the research is to use the knowledge and optimization tools developed in step one 

to solve the SARS' receiver array optimization problem to minimize the geometric 

1-15 



sensitivity. This is to be done in three parts: the optimization of the receiver array 

with respect to a single, hxed transmitter location, the optimization of the receiver 

array with respect to multiple transmitter locations, and the testing of the assump- 

tions 2 and 5 to see if they are indeed valid. The optimization with respect to a 

single, hxed transmitter location, although not an intended condition for the SARS, 

is included in this research because it can be simplified and solved in a way that 

the more general case of multiple transmitter locations cannot, providing valuable 

insights that are not readily apparent if only the multiple transmitter location prob- 

lem is considered. Armed with the insights gained from the simpler problem, the 

case of multiple transmitter locations can be tackled using the optimization tools 

developed in step one. Finally, the results of the receiver array optimizations on flat 

ground will be checked on the White Sands Missile Range elevation data to see if 

the assumptions 2 and 5, terrain and LOS, are in fact reasonable or if they have an 

effect on the results. 

1.7    Overview of Thesis 

Chapter II presents the background material and theory used in this research. 

GPS technology is introduced to lay the groundwork for the understanding of the 

operation of the SARS and the importance of system geometry. Next, the SARS 

concept is discussed, examining similarities and differences between the SARS and 

satellite GPS. Finally, geometric sensitivity of GPS systems is examined to determine 

why it occurs and how it will impact the SARS. 

Chapter III discusses the preliminary research mentioned in section 1.6.1. The 

geometric sensitivity of ground based receiver arrays is examined and alternate mea- 

sures of geometric sensitivity are evaluated to find the best one for the purposes 

of this research. The SARS receiver array optimization problem is posed. Several 

optimization tools, a visualization tool and two receiver array optimization tools, are 

then developed and evaluated. 
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Chapter IV discusses the solutions to the receiver array optimization problems 

(single or multiple transmitter locations). The solution to the receiver array opti- 

mization problem for the single transmitter location is presented and array design 

insights are listed. The results of the more complicated array optimization problem 

for multiple transmitter locations are then discussed. 

In Chapter V, all the results are summarized, a list of key design issues are 

given to aid CIGTF in the placement of the SARS' receivers, and a technique is 

shown that may allow CIGTF to significantly improve the geometry and therefore 

accuracy of the SARS beyond the capabilities of a totally ground based receiver 

array. 

1-17 



II.   Background 

This chapter presents the background material and theory used in this re- 

search. First, the basics of GPS technology are reviewed. Next, the SARS concept is 

discussed, examining the similarities and differences between the SARS and satellite 

GPS. Finally, geometric sensitivity is then examined, showing why it occurs and how 

it can be measured. 

2.1     The Global Positioning System 

The NAVSTAR Global Positioning System is a space-based radio-navigation 

system. It allows high position and time accuracy to be obtained with minimal user 

equipment. This system is used on many Air Force aircraft. This section reviews the 

basics of GPS, to aid in the understanding of the SARS concept and to help show 

the similarities and differences between the NAVSTAR GPS and the SARS. This 

background is by necessity brief. For further background into the workings of GPS, 

refer to the seminal article of Milliken, et. al. [14]. The Global Positioning System 

has three parts: the space segment, the control segment, and the user segment. 

2.1.1    Space Segment. The space segment consists of GPS transmitters 

mounted on satellites with carefully controlled, 12 hour orbits. The spacing of the 

satellites is arranged so that four or more satellites are in view at any given time, at 

any location. The satellites transmit time-tagged information back to Earth, where 

GPS receivers measure time difference of arrival of the signals. This requires the 

satellites to be synchronized. The satellites have highly accurate atomic clocks on- 

board, to make the time information as accurate as possible. The satellites transmit 

on two L-band frequencies called Li and L2. Li is 1575.42 MHz and L2 is 1227.6 

MHz. Li is modulated by two pseudorandom codes: the C/A (coarse/acquisition) 

code and the P (precision) code. L2 is modulated by just the P code. The C/A code 

has a frequency of 1.023 MHz, and is repeated every I millisecond. The P code has 

2-1 



a frequency of 10.23 MHz, and is one week long. The C/A code is used to acquire 

the GPS signal; the P code is used once the C/A code is acquired to obtain higher 

accuracy from the system. The code sequences broadcast by each GPS satellite are 

different, so the GPS receiver can recognize each satellite. 

2.1.2 Control Segment. The control segment consists of monitor stations 

and a master control station. The monitor stations, spread across the world, pas- 

sively track the satellite signals to acquire accurate ranging data. This is used to 

pinpoint the satellite positions in space. This data is sent to the master control 

station, which uses it to correct the satellites' orbits and upload corrected naviga- 

tion message data to the satellites. The control segment also maintains GPS time, 

perhaps the most important part of the system. 

2.1.3 User Segment. The user segment consists of a GPS receiver that 

demodulates the data, and a processor that uses the received information to calculate 

the receiver's position and time. The receiver provides the processor with time 

difference of arrival measurements, called pseudoranges, from each satellite in view. 

These pseudoranges are used via multilateration to hnd the position of the GPS 

receiver. The computation of the receiver's position requires the solution of the 

pseudorange equations, shown here for the four receiver case. The pseudorange 

equations are: 

(zi - uxf + (yi - uvf + (Zl - uzf = (i?x - Bf 

(x2 - uxf + (y2 - uyf + (z2 - uzf = (R2 - Bf 

(x3 - uxf + (j/3 - uyf + (z3 - uzf = (A3 - Bf 

(X4 - Uxf + (j/4 - Uyf + (Z4 - Uzf  =  (i?4 - Bf 

where the pseudorange i?8- to the satellite i is defined as cAt and: 

• c = speed of light 
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• Att=ij2,3,4 =signal transit time 

• (^i=i,2,3,4)2/i=i,2,3,4)^i=i,2,3,4) are the respective z-th satellite positions 

• (uX7uy7uz) is the GPS receiver position that is being solved for 

• B is the GPS receiver clock bias 

To obtain a solution to these equations, at least four satellites need to be in 

view. The above example is for the four satellite case. More than four satellites can 

be used, if desired. In that case, least squares or some other estimation technique is 

used to solve the overdetermined set of equations. To obtain the highest accuracy, 

it is desired to have as many satellites in view as possible. 

The pseudorange equations can be solved either as shown above, or they can be 

linearized to save computation time. Although an algebraic solution to the pseudor- 

ange equations may be desirable from the point of accuracy [4], most GPS receivers 

in use today use the linearized equations to save computation time. This allows 

the position hx to be updated at shorter intervals than if the algebraic solution is 

used [20]. The linearized navigation equations are: 

Q\x cos Q\y cos Q\z 1 

62x cos 62y cos62z 1 

63x cos 63y cos63z 1 

COS 04X COS 04y COS 04Z 1 

COS 

cos 02x 

cos 63x 

Aux Ai?x 

Auy AR2 
X = 

Auz AR3 

AB Ai?4 

These equations can be written more compactly as Hx. = r. r is the vector 

of estimated pseudorange errors, x is the vector of estimated user position and time 

errors, and H is a matrix of coefficients. 

These linear equations represent the error behavior of the navigation equations 

about some nominal user (GPS receiver) position. Of course, these error equations 

are meaningless without an accurate nominal position. This is a problem, because the 

position of the GPS receiver is the unknown quantity that needs to be found.  This 
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problem is overcome by using functional iteration to converge upon good estimates 

of r, H and x. The technique works as follows: 

1. A nominal receiver position and time is selected. For satellite GPS, the 

initial nominal GPS receiver position is chosen to be the center of the earth, 

and a zero clock bias is chosen. 

2. The H matrix is formed. The positions of the GPS satellites are calculated 

by the GPS receiver from ephemeris data received in the GPS signals from the 

satellites. The H matrix is formed, given the positions of the GPS satellites 

and the nominal position of the receiver. 

3. The r vector is calculated. The vector of pseudorange errors is calculated. 

This is the difference between the vector of pseudorange measurements and 

the vector of pseudoranges calculated using the nominal receiver position and 

the positions of the GPS satellites. 

4. The equations are solved for x. The system of equations is solved for the 

estimated receiver position errors x using least squares. 

5. The error is removed. The estimated position (and time) errors are sub- 

tracted from the nominal position and time estimate. This produces an esti- 

mate that is closer to the actual GPS receiver position and clock bias than the 

previous estimate. 

6. Repeat until convergence. This algorithm is repeated until the quantities 

H} r, and x converge, i.e., don't change with successive iterations. Once con- 

verged, an accurate estimate of the GPS receiver position and clock bias is 

known. 

Once the iterative technique has converged, the nominal GPS position and 

time estimates using C/A code are reasonably accurate, i.e., to within 30 meters. 

Additional accuracy is obtained by using differencing techniques, P code, and hlter- 
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ing techniques that estimate the carrier phase.   Depending on the particular GPS 

application, any combination of these techniques may be used. 

Differencing is where more than one receiver is used and the measurements are 

differenced to remove errors common to both receivers. Many errors in the pseudo- 

ranges can be reduced or eliminated through differencing techniques. Differencing 

takes the C/A code error down to within fO meters. This technique is in common 

use in GPS navigation. 

Additional accuracy can be obtained by using the P code. P code is at ten 

times the frequency of C/A code. Using P code provides ten times the accuracy of 

C/A code GPS. Since P code is transmitted on both Li and L2, frequency dependent 

errors can be calibrated out of the system without use of a second reference receiver. 

As the P code is classified, it can only be used for certain applications (like on Air 

Force aircraft). Differential P code obtains accuracies of within one to two meters. 

Estimating the phase of the carrier of the GPS signal can obtain additional 

accuracy. The most complicated of all the techniques discussed here, carrier phase 

estimation has the greatest potential accuracy. The GPS receiver has the capability 

to measure the phase of the carrier to within a small fraction of a wavelength [3]. The 

carrier wavelength is on the order of .2 meters. Therefore, the potential accuracy 

of this technique is on the centimeter level. However, there are some difficulties. 

The fractional part of the phase can be measured, but the rest of the total carrier 

phase (the integral number of wavelengths between each satellite and the receiver) 

must be estimated. It is difficult to estimate this number of wavelengths (called the 

carrier phase ambiguity). If anything interferes with the measurements (such as a 

change in satellites, vehicle dynamics, or loss of lock), the carrier phase ambiguity 

estimates may suddenly change. This is called a 'cycle slip.' The carrier phase 

estimation filter must be able to process not only GPS signal information at a high 

rate, but also simultaneously run a cycle slip detection and compensation routine [2]. 

It is difficult to process this information fast enough to provide real time carrier 
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phase GPS capability in a highly dynamic environment. Therefore, for the GPS 

applications that require the highest accuracy, post processed carrier phase GPS is 

employed. 

Although these techniques all improve the accuracy of the GPS position es- 

timate, no technique can remove all the error. Some pseudorange error Sr always 

remains after compensation. The residual position error is given by H~16r} for the 

four satellite case. In the case of more than four satellites, least squares (in place 

of the inverse) is used to solve this equation. For a given level of residual pseudor- 

ange error, the amount of residual position error depends on H. The H matrix is 

composed of direction cosines between pseudorange vectors and the coordinate axes. 

The z'-th row of H represents the direction cosines of the z'-th pseudorange vector 

with each axis of the four dimensional (space-time) Cartesian coordinate system: 

(x7y7z7t). Since the H matrix is composed entirely of direction cosines, it is purely 

a function of GPS measurement geometry. Therefore, the measurement geometry 

of GPS systems has a profound impact on the accuracy of GPS position estimates. 

Fortunately, the GPS satellite constellation is designed to minimize the effect of ge- 

ometry on GPS accuracy [14,20]. Usually, geometry is not a problem with satellite 

GPS. 

Summary: 

The Global Positioning System provides a worldwide, high accuracy navigation 

system. It requires little user equipment and provides high accuracy in position and 

time. It maintains accuracy over long periods of time and during a wide variety 

of conditions. The GPS receiver uses C/A code pseudorange measurements and 

satellite position data to solve for its position within 30 meters. Depending on the 

application, the techniques of differencing, using P code, and estimating the carrier 

phase may be used to improve the accuracy of GPS beyond the base accuracy of 

C/A code GPS. The measurement geometry of GPS does affect its accuracy, but this 

effect is minimized by the design of the GPS satellite constellation.   GPS provides 
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worldwide, high accuracy position estimates, which makes it ideally suited for use 

onboard Air Force aircraft and has been integrated into the navigation systems of 

many. This has caused CIGTF difficulty, as it has proven difficult to accurately 

flight test these integrated navigation systems. Hence, CIGTF is in the process of 

developing the SARS, with its .1 meter accuracy, to enable accurate flight tests of 

these integrated navigation systems to be performed. 

2.2    The Submeter Accuracy Reference System 

The Submeter Accuracy Reference System is CIGTF's new navigation refer- 

ence system under development. It uses carrier phase GPS technology and post 

processing to obtain high accuracy [7,17]. This accuracy will enable the SARS to 

accurately test some of the better navigation systems on Air Force aircraft, some- 

thing which has been a problem in the past. 

Test Aircraft 

Figure 2.1     SARS Concept 

The concept of the SARS is shown in Fig. 2.1. The basic concept of the SARS is 

to use an array of GPS receivers to locate the position of a moving GPS transmitter, 

called a pseudolite.   This technique is independent of the GPS satellites, allowing 
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performance of GPS-based aircraft navigation systems to be accurately tested. Since 

the transmitter and receivers are both controlled by CIGTF, they can be made to 

operate at different frequencies than the satellites, allowing the reference system to 

test aircraft navigation system performance under jamming. Most importantly, this 

system requires only a transmitter to be mounted on the test aircraft. This allows 

the system to test the navigation systems of all Air Force aircraft. 

The SARS uses carrier phase GPS to obtain the high accuracy it requires. 

This requires a reference pseudolite and an array of GPS receivers at very accurately 

surveyed locations, in addition to the mobile pseudolite [7,17]. The mobile pseudolite 

is a GPS transmitter attached to the test aircraft. During the flight test, each GPS 

receiver in the receiver array records the pseudoranges to both the stationary and 

mobile transmitters. After the flight, this information is transferred to the central 

processing station. There, the raw data is processed and the carrier phase estimation 

filters are run. The end result is an accurate recording of the aircraft's trajectory 

during the flight test. This is used to evaluate the performance of the aircraft's 

navigation system. For a detailed discussion of carrier phase estimation as applied 

to the SARS, refer to the work of Hebert [7]. 

Although the SARS is not yet fully operational, the concept has been tested [17]. 

The concept test used a GPS transmitter mounted on a van as the mobile pseudolite. 

The receiver array consisted of six GPS receivers. Although the geometry of the con- 

figuration was poor because everything was nearly coplanar, the system performed 

well. Accuracies of 10 to 30 centimeters were obtained. This is encouraging news for 

the SARS, because it shows that only a small improvement in accuracy is needed to 

obtain the desired accuracy goal of .1 meter. As the geometry for the concept test 

was so poor, it is anticipated that optimizing the geometry of the SARS will achieve 

the desired improvement in accuracy [7]. 

As it stands now, the SARS' concept has been successfully tested, but its ac- 

curacy needs to be improved as much as possible to enable it to perform its mission. 
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It is thought that the SARS' measurement geometry will profoundly affect its accu- 

racy. Unfortunately, the best ways to place the SARS' receivers on the ground are 

not known. The receivers will be located on the ground, nearly in a flat plane. This 

kind of planar configuration is avoided in the design of the satellite GPS. The liter- 

ature on satellite GPS geometry does not aid in the design of SARS receiver arrays. 

Therefore, the geometric sensitivity of ground based GPS systems such as the SARS 

need to be examined to enable intelligent choices of receiver array configurations to 

be made. 

2.3    Geometric Sensitivity 

Geometric sensitivity is due to the fact that pseudorange errors are magnified 

in the solution of the pseudorange equations for position. Geometric sensitivity is 

a gauge of the goodness of the position estimate. The degree of error magnification 

depends on the relative positions of the GPS system elements (transmitter and re- 

ceivers, for the SARS). The information about the system measurement geometry is 

contained in the H matrix, also called the visibility matrix. The H matrix is com- 

posed of angle cosines; each row contains the cosines of the angles between the line of 

sight vector from the transmitter to receiver and each of the component coordinate 

axes: (cosx, cosy, cosz, cost). The cosines with respect to the time dimension are 

always I for every receiver. Although the H matrix is composed of direction cosines, 

it is somewhat different from the familiar direction cosine matrix. A direction cosine 

matrix represents a coordinate transformation between orthonormal bases (and is 

therefore itself orthonormal). The H matrix can be considered a non-orthogonal 

transformation from a basis consisting of four or more transmitter-receiver line-of- 

sight vectors to the four dimensional space consisting of an orthogonal Cartesian 

coordinate basis and the time dimension. Therefore, the H matrix does not have the 

desirable property of orthonormality, as does the direction cosine matrix. This can 

be a problem, because the solution process involves inverting the H matrix.  If the 
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matrix is ill conditioned, small errors in the measurements (the 'inputs') can have 

a big impact on the computed position, (the 'output'), as shown by the following 

'contrived' example. 

Consider the equation Ax z. 

1    1000 

0      1 

a 

b 

1000 

1 
f2.r 

Solving the matrix equation for a and 6 yields a = 0 and 6 = 1. Consider now 

the same equation, but with a small error Sz in the input z. 

1    1000 

0       1 

a 

b 

1000 

l + Sz 
(2.2) 

Solving the equation now yields a = —10006z and 6=1 + Sz. The relative 

error in the input vector z is =^. The relative error in the output vector x is 

approximately lOOOSz. Therefore, solving the system of equations amplifies the 

relative input/output error by a factor of 106. Of course, this is a contrived example, 

but the same kind of thing can happen with the GPS pseudorange equations. 

Indeed, it is possible for the H matrix to become ill conditioned as a result of the 

system geometric configuration. The receiver array and transmitter configurations 

that result in an ill conditioned or nearly singular H matrix are generally referred 

to as 'poor geometry' Examples of good and bad GPS measurement geometry are 

shown in Fig. 2.2. One could run into trouble due to an ill conditioned or nearly 

singular H matrix (poor geometry) in three ways. The hrst way is when the receiver 

array and the transmitter all lie approximately in one plane. This results in a nearly 

linearly dependent column in H. It does not matter how many receivers there are; if 

the transmitter is nearly coplanar to them, the geometry will be very poor and the 

errors in the position will be greatly amplified. Therefore, the receiver array should 
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Figure 2.2    4 Receiver Array, Optimized about the Origin 

be designed so that either all the receivers do not lie in one plane or the transmitter 

will never need to approach the plane of the receiver array. The second way to 

get poor geometry is when the line of sight vectors drawn from the transmitter to 

the receivers have similar angular orientations. This occurs when several receivers 

'line up' from the viewpoint of the transmitter, as happens when the transmitter is 

very far from the receiver array. This idea can be visualized as an eclipse: receivers 

appearing to be in the same part of the sky from the viewpoint of the transmitter. 

The eclipse analogy is particularly apt: the 'eclipsed' receivers do not have any 

impact on the geometry. They could be removed from the array without changing 

the geometry at all. This occurs because the H matrix will have nearly equal rows 

for those receivers that are eclipsed. Only one of those nearly linearly dependent 

rows will have any geometric significance. Therefore, one must either have enough 

receivers to withstand 'eclipses' or design the array as to avoid them. The third way 

to run into trouble is for the transmitter to be in certain 'unfavorable' positions near 

a receiver array where the solution does not exist. An example of such an unfavorable 

location is when the transmitter is placed directly over the center of a planar array 
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composed of a four receiver square. This produces a singular H matrix, signifying 

that the solution does not exist for that configuration. Clearly, receiver arrays with a 

high degree of symmetry that produce such 'unfavorable' locations must be avoided 

as much as possible. 

Summary: 

The geometric sensitivity of the GPS position estimate is shown in the H 

matrix. The H matrix is a function of the relative positions of the GPS receivers 

and transmitter (for inverted GPS). The H matrix is the mapping between residual 

pseudorange errors and errors in the position estimate. Since all the pseudorange 

error cannot be eliminated, there always is some position error. For a given amount 

of residual pseudorange error, the amount of position error is determined by H. The 

GPS measurement configurations that produce little amplification of pseudorange 

errors due to H are called 'good geometry' Although it is known that the GPS 

satellite constellation produces good geometry for satellite GPS, it is not known 

what receiver array configurations will produce good geometry for the SARS. It is 

desired to hnd good receiver array configurations for the SARS so that its accuracy 

can be improved as much as possible. 
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777.   Preliminary Research 

This chapter discusses the preliminary research into the receiver array opti- 

mization problem. Preliminary research was needed in order to properly set up the 

receiver array optimization problem and develop numerical optimization tools to 

aid in its solution. The preliminary research consists of the following: the charac- 

terization of GDOP, an examination of alternate measures of geometric sensitivity, 

the proper choice of cost function in the receiver array optimizations, the posing 

of the receiver array optimization problem, and the development of receiver array 

optimization tools to aid in its solution. 

3.1     The Characterization of GDOP 

Throughout the literature, the GDOP is used as a measure of geometric sen- 

sitivity for GPS applications. The behavior of GDOP on the ground for satellite 

GPS is fairly well documented, but SARS' geometry is different enough from satel- 

lite GPS to warrant an examination of the behavior of GDOP for the SARS. The 

examination of the GDOP is conducted in two parts. First, a simplified two dimen- 

sional (planar) GPS navigation example is discussed to gain insights into the more 

difficult three dimensional case. Next, the analysis of GDOP for three dimensional 

navigation is discussed. The results of this analysis reveal the behavior of GDOP 

as a function of receiver array configuration and transmitter position. These results 

show how the SARS geometry is so much different than that of the satellite GPS 

and why the SARS' receiver arrays need to be carefully designed if high accuracy is 

to be obtained. 

3.1.1    Simplified (2D) GDOP Analysis. GDOP is a difficult function to 

minimize. The GDOP function is the square root of the trace of a matrix inverse, 

which makes it difficult to minimize analytically. The matrix being inverted (H) 

is the matrix that maps the pseudorange measurement errors into position errors. 
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Its complexity increases with the number of simultaneous measurements (number of 

GPS receivers). It is desired to get a 'handle' on the behavior of GDOP around GPS 

receiver arrays (for inverted GPS), to gain insights that will aid in the optimization 

of the receiver arrays. 

The first step in analyzing the GDOP is to consider the simplified case of two 

dimensional navigation. The two dimensional case removes the third dimension from 

the picture. What is left is a planar navigation problem, which requires three GPS 

measurements (or more) in order to solve for the three errors (two position errors, 

one transmitter clock error). The problem then becomes determining the planar 

region(s) of acceptable GDOP around the two dimensional receiver arrays. The 

analysis of this model provides insight into the general way GDOP depends on the 

system configuration, and gives a rough idea of the number of receivers and general 

configuration needed to obtain a region of good GDOP large enough to conduct a 

reasonable flight test within. 

3.1.1.1    MATLAB 2D Range Simulation. Several MATLAB pro- 

grams are used to take a specified receiver array and calculate the GDOP at the 

transmitter as it flew by on some simple trajectory (line, circle, etc.). These algo- 

rithms are designed to provide plots of the general behavior of GDOP as the receiver 

array design parameters of receiver configuration, receiver spacing, baseline, number 

of receivers, and transmitter position are varied. The use of these algorithms helps 

to identify the behavior of GDOP and to give a rough estimate for how big a vi- 

able range a certain configuration or number of receivers produces. The programs 

discussed are simple and general. Receiver and transmitter positions are given as 

simple points on the x-y plane. Receiver spacing, although it does differ among the 

configurations, was set at approximately I unit to simplify the analysis. This is 

justified because GDOP is a function of the geometry (shape), but not a function of 

the size of the shape. This simplifies the model analysis because range from trans- 

mitter to the receivers can be normalized to the spacing between the receivers (or 
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the receiver baseline). There are three different transmitter flight profiles considered: 

a circle around the center of the receiver configuration, a line of constant distance 

from the receiver baseline, and a line moving directly towards/away from the array of 

receivers. These three flight profiles allow the two dimensional simulation to be con- 

sidered to lie within a horizontal plane or a vertical plane. Since the algorithm takes 

only relative positioning into account, this interpretation is justified. (One could call 

the position axis altitude,westward position, or some other axis orientation without 

loss of generality.) 

3.1.1.2 2D Simulation Results. The Matlab simulations provide the 

expected insight into the behavior of the GDOP as a function of the system con- 

figuration. Many different receiver configurations and transmitter flight profiles are 

considered, allowing a full characterization of the GDOP function. The results of 

the simulation indicate several overall trends that prove helpful in the design pro- 

cess. The hrst trend is that GDOP seems to depend mainly on the ratio between 

the receiver baseline (receiver array length) and the distance between the transmit- 

ter and the receiver array. The second is that most receiver configurations produce 

regions of alternating good and terrible GDOP as the transmitter moves along its 

flight profile. Those arrays are not acceptable for use in the test range, regardless of 

how low the minimum value of GDOP in the good parts is. The last trend is that 

the overall system performance improves gradually with the addition of more GPS 

receivers, with the point of diminishing returns occurring at such a large number 

of receivers that other constraints will ultimately determine the number of receivers 

actually used in the system. 

The hrst trend is the most obvious. GDOP is mainly a function of the ratio 

between the distance from the transmitter to the center of the receiver baseline and 

the length of the receiver baseline. In fact, if the receiver baseline were to be defined 

as the width of the receiver array perpendicular to the line of sight between the 

transmitter and the center of the array, GDOP would almost entirely be a function 
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of that transmitter distance/receiver baseline ratio. It turns out that this result is 

a relation between GDOP and the angle that the receiver array occupies from the 

transmitter's point of view. The relation between GDOP and this angle, called the 

held of view (FOV), is investigated later on in this chapter. An example of the 

relation between GDOP and the FOV in two dimensions is shown in Fig. 3.1. 

150 200 250 
Field of View (degrees) 

Figure 3.1    GDOP vs. Field of View 

The GDOP quickly gets large as the transmitter distance/array size ratio in- 

creases. It may also get large as the ratio decreases past a certain value, depending 

on the receiver array. An example of this is shown in Fig. 3.2. If the array is a 

line of receivers, as is shown in Fig. 3.2, the GDOP will be large for both extremes 

of the ratio. If the array deviates significantly from a linear shape, the GDOP will 

only get large when the ratio gets large. It has been found that the GDOP with 

the transmitter inside such an array is better than the GDOP with the transmitter 

outside the receiver configuration.   Unfortunately, this is not really possible with a 
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Figure 3.2    GDOP vs. Ratio of Transmitter Distance to Array Size 

ground based receiver array. (Note: when the receiver array is nearly collinear, this 

does not work, and turns out to be one of the worst places to put the transmitter). 

This trend affects the system design in that it limits the altitude range over which 

any given configuration will have good GDOP. 

Good GDOP is attained only in a narrow altitude band directly over the re- 

ceiver array. Both minimum and maximum altitude bounds exist, for any desired 

GDOP. The minimum bound occurs because lines drawn from the transmitter to 

each GPS receiver in the array are almost collinear at low altitudes. This reduces 

the effective number of receivers in the array to just two, making the GDOP in 

certain positions skyrocket. If the transmitter is directly above a GPS receiver, this 

problem does not occur. The effective number of GPS receivers will still be three, 

which is enough to solve the GPS equations. With a fixed, ground based receiver 

array, it is not possible to keep the transmitter directly above a GPS receiver at all 
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times during the flight. A minimum altitude restriction is therefore imposed on the 

aircraft, preventing it from flying into the bad GDOP regions close to the ground, 

in between the receivers. Using a moving receiver or a GPS satellite could elimi- 

nate this minimum altitude problem, if necessary. The maximum altitude bound 

occurs because lines drawn from the transmitter to the receivers all seem to be go- 

ing the same way if the transmitter is at high altitudes. This reduces the number 

of effective receivers in the array down to one receiver, clearly making the GDOP 

greatly increase. Therefore, for the two dimensional equivalent of the SARS, there is 

a minimum altitude bound and a maximum altitude bound on the transmitter's flight 

profile. 
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Figure 3.3    Simple Circle 'Flight' Around a Receiver Array 

The second trend is that the GDOP is choppy for some receiver configurations. 

This was discovered by simulating the transmitter flying a circle around the receiver 

array, as shown in Figs.   3.3 and 3.4.   This is easiest to interpret (in 3D) as flying 
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Figure 3.4    GDOP vs. Theta: Circle Profile in 2D 

a circle of constant altitude and radius around the edge of a receiver array, but 

can also be seen as flying over the array and plotting the GDOP vs. transmitter 

elevation angle from the center of the receiver array. However one visualizes it, the 

simulation shows that the GDOP goes through sizeable maxima and minima as a 

function of the position of the transmitter on the circular flight path. This looks 

somewhat similar to the maxima and minima of a phased array antenna. It turns 

out that any time that a line can be drawn from the transmitter through two or more 

of the receivers, the GDOP sharply increases. That can possibly be interpreted as 

an effective reduction of one or more GPS receiver from the array, at that instant. 

This kind of trend points to making the receiver configuration be a flat plane (or 

a straight line in two dimensions) to maximize the angular region of good GDOP. 

Fortunately, that kind of configuration is what is natural for a ground based system, 

so this does not pose that big of a problem in the design. The biggest benefit of the 
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planar (or straight line in 2D) configuration is that the receiver baseline is maximized 

(for when the transmitter is directly above the array), giving a large angular held of 

good GDOP directly overhead (inside the good altitude range). 

The final trend is that increasing the number of receivers in the array gradually 

but continually improves the performance. The performance improvements bought 

by adding receivers are increased array baseline (by putting more on the end), larger 

region of low GDOP (mainly increases altitude range), overall lower GDOP, and 

smaller variation in GDOP within the good GDOP region. Increasing the receiver 

baseline by extending the array simply widens the region of good GDOP. The mini- 

mum altitude is not affected, but the maximum altitude is increased. The horizontal 

region of good GDOP is extended by the amount that the baseline is extended. One 

might think that simply increasing the receiver spacing would have the same effect, 

but it does not, because the minimum altitude increases as well. It has been found 

that sizable performance improvements are realized when receiver numbers are in- 

creased to about fifteen or twenty in a line, at which time a point of diminishing 

returns is reached. Of course, that's probably too many (especially if a grid is in- 

tended), so a tradeoff is necessary. The number of receivers in a line to get a GDOP 

of two for some small altitude range over most of the baseline is six or seven. The 

corresponding (small) good altitude range over that baseline is about three quarters 

of the distance between two consecutive receivers, starting at a minimum altitude 

of half that distance. That's a pretty tight region, so it may be worth it to have a 

large number of receivers in the array. 

3.1.1.3    Summary:   Simplified (2D)  GDOP Analysis. The results 

indicate that there is a tradeoff between system utility and the number of receivers 

used in the array. With too few receivers in the array (approximately less than 

a 5 X 5 grid), the GDOP of the system is higher than that obtained from using 

the satellites. The baseline is too small, or the receivers are too widely spaced. If 

the baseline is too small, the test range is simply too small to be useful.   If the 
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receivers are too widely spaced, the minimum altitude is too high for some of the 

Air Forces aircraft or for any kind of low altitude mission. Without an external 

aiding measurement of some kind to improve the geometry, the only way to improve 

the system is to keep adding more receivers, which quickly gets complicated and 

costly. An array of many receivers would work, but would be time consuming to 

maintain, complicated to coordinate, and costly to acquire and upgrade. How many 

is too many? It really depends on the mission of the range, and the logistics of the 

situation. If low altitude, wide area testing needs to be done, then lots of receivers 

need to be used. If logistics are the prime concern, then maybe a high altitude, 

reduced area test range needs to be considered, if indeed it is worth it to implement 

it at all. The overall conclusion of this research into the two dimensional navigation 

problem is that unless lots of receivers are available, either a GPS satellite, a moving 

receiver, or an additional measurement (e.g., altitude) needs to be incorporated into 

the system to obtain the desired accuracy and size of the range necessary for this 

system to be useful. As a side note, the addition of just one GPS satellite to aircraft 

measurement so dramatically improves every aspect of the system performance that 

some method for using a GPS satellite (even during jamming) should be considered, 

if possible. 

3.1.2 Three Dimensional GDOP Analysis. Now that a basic idea of what 

to expect has been provided by the two dimensional problem, the behavior of GDOP 

for three dimensional GPS navigation is examined. This is done by using graphical 

technique to plot the GDOP as a function of transmitter location for a fixed receiver 

array. The GDOP around a receiver array is plotted as a 3-D scalar held, much like 

a plot of voltage around charged particles. The positions of the receivers are known, 

and the GDOP at any point in space is taken as if the transmitter were to occupy 

that same point. In this way, the resulting three dimensional scalar held of GDOP 

indicates what the GDOP would be at any point in that space if the transmitter were 

located there. This provides three dimensional plots of GDOP 'fields' around receiver 
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arrays. The GDOP fields around receiver arrays are plotted to help figure out which 

receiver array configurations produced the best overall GDOP characteristics. This 

entails a reasonable low GDOP range which is uniform, i.e., without 'spikes' of high 

GDOP. This plotting of the GDOP fields is very useful for receiver array design. 

The plotting of the GDOP fields around different receiver arrays sheds light 

on the receiver array design problem. Examination of the plots reveals that there is 

considerable leeway in deciding what the 'best' GDOP held is, that the best receiver 

array configuration depends on the specific use of the array, and that the use of a 

ground based array places severe constraints upon the system design. These findings 

help clarify the design problem for the SARS and give important insights towards 

what could be done in the subsequent numerical optimization of the receiver array. 

There is some leeway in deciding just what a good GDOP held is. Given some 

receiver array configuration, the GDOP held produced by the receiver array will 

be 'good' if the GDOP of the measurements is satisfactory over the aircraft's flight 

profile(s). Satisfactory GDOP certainly depends on the application. For the SARS, 

it is desired to have GDOP similar to that of the satellite GPS system, i.e. a GDOP 

less than 5 throughout as much of the flight profile as possible. Any number of array 

configurations could be made to provide the satisfactory GDOP for a given flight 

profile, with the same or different numbers of receivers in the arrays. As an example, 

Figs. 3.5-3.8 show two planar arrays that are different but provide essentially the 

same GDOP throughout the aircraft's flight profile. Similarly, if the receiver array 

configuration is fixed, the flight profile can be specifically chosen to make the most 

efficient use of the receiver array's GDOP fields, as shown in Figs. 3.9 and 3.10. 

If the resulting arrays and flight profiles produce satisfactory GDOP histories, the 

GDOP fields are classified as 'good'. 

Of course, both of these methods require either the flight profile or the receiver 

array to be known in advance, before the 'goodness' of the GDOP fields can be 

evaluated. 
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Figure 3.10    GDOP Along the Flight, 
Array 3 

If neither flight profile nor receiver array are specified in advance, a desired region 

for a held of good GDOP can be dehned that can be used as a criterion for array 

design. For example, such a held of good GDOP could be a hfty mile wide by hfty 

mile long by three mile high rectangular box of airspace starting at 5000 feet above 

the ground, with the GDOP inside the box no greater than six. This 'good GDOP 

region' concept also simplihes the choice of flight prohle, because any flight prohle 

that stays inside the good GDOP region is guaranteed to be acceptable, making the 

system more flexible and also more robust than it would be if tailored exclusively 

for a single flight prohle. Hence, the global 'good GDOP region' concept has been 

extensively used in analyzing and comparing receiver arrays. 

Comparing the GDOP helds of various arrays, a feasible array that is good for 

every intended application cannot be found. In free space, the inside of a spherical 

array does prove to have the best GDOP for a given number of receivers, as shown 

in Fig. 3.11. Even just four receivers in a tetrahedron provide GDOP values less 

than three throughout the entire region inside the tetrahedron. Such a region of low 

GDOP is hard to improve upon. Indeed, adding additional receivers to the sphere 

does little to improve the low GDOP region, as shown in Fig. 3.12. Unfortunately, 

it may not always be possible or desirable to conhgure the receivers in a spherical 
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array. If it is necessary to navigate at some distance from the array, Figs. 3.13 and 

3.14 show that a planar array might prove just as good as a spherical array, provided 

that there are at least ten to fifteen receivers in the planar array. In the case of the 

SARS, it is desired to make a ground based (almost planar) array have the same 

kind of low GDOP region that the satellite GPS provides, at least for a small volume 

of test range airspace. 

This necessity for low GDOP at low altitudes forces severe design penalties on 

the SARS. For a ground based array, with an overall size somewhere around a fifty 

by fifty mile square, a full overflight by an aircraft may take it through variations of 

GDOP in the twenties to the hundreds, depending on the array and the flight profile. 

Such a large variation happens because the distances from the transmitter to the 

receivers are so small that the aircraft's motion drastically changes the angles on the 

line-of-sight (LOS) vectors drawn from the receivers to the transmitter. Obviously, 

this does not happen with satellite GPS. Since GDOP is a function of these angles, 

drastic changes in those angles can produce drastic changes in GDOP. To reduce 

the drastic changes in the GDOP, the receivers should be as far as possible from 

the transmitter, while still retaining enough angular variation from the transmitter's 

point of view to obtain good GDOP. Unfortunately this idea puts severe constraints 

on the design of a ground-based receiver array. 

The behavior of the GDOP fields reveals severe constraints on the design of the 

ground based array. The two constraints are the horizontal extent of the array and 

the tradeoff between receiver density and minimum useful altitude of the system. 

The first constraint is the fact that for any ground based array of reasonable size 

for flight testing (> 20 mi. diameter), the useable area of low GDOP will only occur 

directly above the array. Fig. 3.15 shows this constraint. Looking at the plot, 

it is evident that most of the low GDOP region is simply too high for aircraft to 

fly through. The part that is low enough to be useable is just directly over the 

array.   So, in order to achieve a good fifty mile by fifty mile GDOP airspace, the 
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Figure 3.13    Vertical Cross Section of GDOP Fields, 25 Receiver Planar Grid 
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Figure 3.14    Vertical Cross Section of GDOP fields, 9 Receiver Planar Grid 
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receiver array must also occupy at least a fifty by fifty mile square. The second 

constraint is that there is a lower altitude limit for the low GDOP region. This 

limit is directly dependent on the density of the receivers on the ground, directly 

underneath the specified low GDOP region; lowering this lower altitude limit means 

increasing the receiver density on the ground. For example, an airspace with low 

GDOP (GDOP< 5) that is thirty miles square at one mile above the ground level 

requires about twenty- five receivers. If the region needs to be larger, then the 

number of receivers must go up with the increase in array area. If the altitude lower 

bound needs to be lower, than the receiver density needs to be increased. Each way, 

the number of receivers needed increases much faster than the useful extent of the 

low GDOP region. A point of diminishing returns is rather quickly evident. The 

worst part of it is that above the minimum altitude, the benefit of the additional 

receiver density is almost negligible. Clearly, the higher the minimum altitude bound 

on the low GDOP region is, the fewer receivers are needed in the array, or the larger 

the array (and therefore the test airspace) can be made with the same number of 

receivers. Of course, if low GDOP is desired at the runway, then there will be serious 

problems. Even in mountainous country, and/or using 300 foot towers, it is hard to 

get the GDOP at any point within a few thousand feet of the array plane (ground) 

to be uniformly less than from fifty to one hundred. 

The conclusion drawn is that achieving low GDOP at low altitudes over a wide 

area requires a large number of receivers. 

Taken as a whole, the plotting of the fields of GDOP of receiver arrays clarifies 

the design issues for ground based GPS receiver arrays, like the SARS. First, the 

visualization of the GDOP airspace the transmitter would be flying through helps 

to show the flexibility available when both flight profile and receiver array can be 

specified. In fact, the concept of the held of 'good' (low) GDOP, which came about as 

a way to simplify the design process, proves useful as a general benchmark of array 

performance, removing the dependence on the flight profile,  and adds flexibility 
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Figure 3.15    Vertical Cross Section of GDOP Fields, Useable Range 

to the resultant system. Second, the comparison of the GDOP fields of different 

array configurations show that, while the best GDOP is found at the inside of a 

spherical array, some applications could be better off by using other configurations. 

Unfortunately, the SARS is not one of those applications, and low GDOP comes 

only at the cost of large numbers of receivers. Finally, the GDOP held plots of 

ground-based arrays show the tradeoffs between the extent of useable good GDOP 

airspace, the number of receivers, the receiver density, and the minimum altitude for 

low GDOP. These tradeoffs can now be used to optimize the ground-based receiver 

array. 

3.1.3 Summary: Characterization of GDOP. As the hrst step towards the 

eventual goal of receiver array optimization, the behavior of GDOP around receiver 

arrays is characterized and important insights are gained.   The analysis of the two 
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dimensional navigation problem illustrates the tradeoffs inherent to the design of the 

SARS: receiver spacing vs. minimum transmitter altitude, and number of receivers 

vs. array size and GDOP. Although these results are not directly applicable to 

the SARS, they illustrate the basic design constraints inherent in optimizing the 

geometry of an inverted GPS receiver array. The plotting of the GDOP fields shows 

that the low GDOP region is a useful performance benchmark, that there is not 

one 'optimal' array configuration for all applications, and that ground based GPS 

receiver arrays like the SARS require many more receivers than the satellite GPS to 

achieve the same GDOP in a reasonable airspace. This is the result of the tradeoffs 

between minimum altitude, receiver density, and the size of the useable low GDOP 

airspace: the same tradeoffs found from the two dimensional analysis. Taken as a 

whole, the analysis of GDOP shows just how different the designs of the SARS and 

satellite GPS are. First, the SARS requires a large number of receivers to be useful. 

Second, the receivers must be placed carefully, with the flight profile in mind, or 

unacceptably high GDOP may result. Third, the SARS has a stringent minimum 

altitude below which the GDOP is terrible. These three differences make the design 

of the SARS totally different than that of the GPS satellite constellation, and make 

the choice of receiver array and flight profile much more difficult. The results of the 

characterization of GDOP clarify the array design issues, and provide insights that 

prove invaluable in the numerical optimization of the SARS' configuration. 

3.2    Alternate Measures of Geometric Sensitivity 

Although the GDOP is widely used in the literature as the measure of geometric 

sensitivity for GPS systems, it is desired to simplify the array design process by 

finding a better measure of GPS position sensitivity to measurement errors than the 

GDOP. Two candidates to be evaluated vs. GDOP are the condition number of the 

H matrix and and the angular held of view the receiver array takes up from the 

transmitter's point of view.   The condition number of H is a candidate because it 
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is a direct expression of how close the H matrix is to singularity. It is thought that 

cond(i7) will prove to be a better measure of geometric sensitivity than the GDOP. 

The angular held of view (FOV) is a candidate because it it allows physical insight 

into the problem which may aid the array optimization. Although neither function 

is actually easier to compute than the GDOP, both functions bring more geometric 

insight into the problem. 

3.2.1 The Condition Number of H. Since the geometry goes 'bad' when 

the H matrix approaches singularity, and a natural measure of how close a matrix 

is to singularity is the condition number, an investigation is conducted to determine 

whether the condition number of the H matrix provides a better measure of the 

geometric sensitivity than the GDOP. 

The condition number of a matrix H is defined as the ratio of the largest and 

smallest singular values of H} viz., 

Cond(H) 
max X(H'H) 

\ min X(H'H) 

where A(-) denotes the eigenvalues of the matrix. A high condition number indicates 

that the matrix is approaching singularity. A condition number of unity indicates 

that the matrix is as well conditioned as possible. Indeed, only an orthogonal matrix 

with equal eigenvalues (e.g., an orthonormal matrix multiplied by some scalar) can 

have a condition number of unity. 

As mentioned before, an ill conditioned H matrix can cause the relative error 

in the computed position to be much larger than the relative measurement error. 

The upper limit on how much the position error could possibly be increased is given 

by the condition number, as shown by the following Theorem. 
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Theorem ULI   Consider the matrix equation 

Hi 

with x being the desired output and z being the input.   Assuming the H matrix is 

error free, the relative error magnitude of the computed position is bounded above as 

II Ar II II Az II 
V^l < Cond{HY-\=^. (3.1) 

Thus, the condition number of a matrix represents the worst case error ampli- 

fication that could result from using the matrix to solve a linear system of equations. 

For the matrix A in the contrived example, the condition number was 106: the error 

amplification achieved its theoretical maximum. For the H matrix, since it embod- 

ies the GPS system measurement geometry, cond(i7) shows the maximum possible 

impact of the measurement errors on the system accuracy due to geometry alone. 

The bounding property of the condition number on the error amplification makes 

cond(i7) a robust measure of geometric sensitivity, more conservative than the clas- 

sical definition for the GDOP function. This could prove useful for optimizing the 

receiver array geometry. 

But just how much different is the information content of cond(i7) from that 

provided by the classical definition of GDOP? Both functions provide some measure 

of geometric sensitivity based on the H matrix. If the classical GDOP function 

provides the same information as the condition number, then continued use of the 

classical GDOP figure of merit for the optimization is preferable. And if the two 

functions are different, it is desirable to know which one is better for the purposes 

of optimizing the receiver array geometry. 

To see how cond(i7) differs in information content from the classical GDOP, 

a Monte Carlo simulation experiment was conducted. The simulation hrst formed 

a receiver array, then created a 'blanket' of transmitter (user) positions randomly 
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throughout a region enclosing the receiver array. The H matrix at each transmitter 

point was then generated, and the GDOP and cond(i7) were taken. Running the 

Monte Carlo simulation a few times, it was found that, for a fixed receiver array, the 

classical definition of GDOP is roughly linearly correlated with the cond(i7) function, 

as is shown for a 21 receiver planar disk array in Fig. 3.16. Thus, aiCond(H) < 

GDOP < a2cond(H) for a given receiver array, where a\ and a2 are the slopes of 

the lower and upper bounds of the cone shaped point distribution on the correlation 

plots. As surmised, both functions convey somewhat similar information. But, as 

the simulation was run over different arrays some differences between the functions 

emerged. 

Looking at the GDOP vs. cond(i7) correlation plots for different array con- 

figurations and arrays of different numbers of receivers, it was found that the lower 

bound slopes a\ of the correlation plots depend on the number of receivers in the 

array, and that the spread of the correlation plots (a2 — a\) depends on the array's 

geometrical configuration. Fig. 3.18 shows the dependence of the correlation lower 

bound slope a\ on the number of receivers. The spread of the correlation plot refers 

to the width of the cone shaped correlation point distribution; i.e., how big the dif- 

ference is between a\ and a2. This spread is tighter, the better the array's geometry 

is. Fig. 3.16 and Fig. 3.17 show how the correlation plot spread changes with array 

geometry. The correlation plot of the 21 receiver spherical array (Fig. 3.17) shows a 

much tighter distribution of correlation points than that of the 21 receiver disk (Fig. 

3.16). 

From Fig. 3.18, one can see that the slope of the correlation lower bound 

decreases with an increase in the number of receivers in the array. This happens 

because the GDOP always decreases with the increase in the number of receivers, 

but the condition number may either decrease or increase, depending on whether 

the geometry is improved or not. 
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Figure 3.17    Correlation between GDOP and Cond(i7), 21 Receiver Sphere 
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Figure 3.18    Slope of GD0P/Cond(i7)  Correlation Lower Bound vs.  Number of 
Receivers 

Hence, the GDOP parameter is determined by both the number of receivers 

and the array geometry, but the condition number is a measure of geometry alone; 

this is the main difference. Also, from the plots showing the differences in correla- 

tion spread, one can see that the GDOP and cond(i7) functions are less strongly 

correlated in planar arrays than for three dimensional arrays with appreciable vol- 

ume. In planar arrays, the GDOP at points with the same condition number can 

vary significantly. This effect occurs mainly near the plane of the array. Since the 

SARS' usable airspace will lie almost entirely within the region close to the plane of 

its array (the ground), the fact that cond(i7) has a weaker correlation to the GDOP 

in this region may be important. 
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In conclusion, these results show that the condition number of the H matrix 

is a worthwhile candidate for use in place of the classical GDOP in the optimization 

of ground based (nearly planar) receiver arrays (e.g., the SARS) for three reasons. 

1. The absence of direct impact of the number of receivers on the condition num- 

ber of H allows the focus of the optimization to be on array geometry alone. Ar- 

rays with differing numbers of receivers should be able to be compared in terms 

of measurement geometry over the flight profile, without having to 'compen- 

sate' for the difference in numbers of receivers, as would be the case if GDOP 

is used. Of course, the more measurement taken, the better the SARS' accu- 

racy will be, but that can be dealt with as a separate issue. Using cond(i7) 

decouples the problems of finding good array geometry and deciding on the 

number of receivers for filtering purposes. 

2. The condition number establishes an upper bound on the error amplification 

due to measurement geometry. Therefore, it can be used as a criterion for 

the largest allowable error magnification in the computed position, due to 

geometry. A way to use this concept is to design the receiver array to produce 

a region of airspace around a flight profile in which the cond(i7) is less than a 

specified maximum bound. Given the relative independence of cond(i7) on the 

number of receivers, the array could also be optimized with respect to numbers 

of receivers as well. 

3. The behavior of the condition number of H at low altitudes over a planar array 

is somewhat different from that of GDOP. It has been found that using GDOP 

as the cost function for planar array optimization causes numerics problems. 

Since cond(i7) behaves somewhat differently than the GDOP next to the plane 

of a planar array, it may be that cond(i7) will make a more effective cost 

function for receiver array optimization. 
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These three reasons suggest that the condition number of H may prove more 

worthwhile for use as an optimization criterion than the classical GDOP. However, as 

the correlation plot shows, the projected improvements from using cond(i7) instead 

of the GDOP are likely to be small, due to the high correlation between them. In 

fact, the main consideration between the functions may well be how well they 'lend' 

themselves to the array optimization process. Therefore, both functions are used 

as criteria to aid the receiver array optimization process. Which one is better is 

determined by how the resulting 'optimized' arrays turn out. 

3.2.2 Field of View. The other alternate measure of geometric sensitivity 

investigated is the transmitter's angular held of view of the receiver array. The 

importance of this concept was noticed in the course of analysis on a simplified, two- 

dimensional (planar) GPS system. In that analysis, it was noticed that there was a 

strong correlation between the total angular held of view the receiver array took up 

from the user's vantage point and the GDOP. In fact, it was found that there was a 

limiting curve on the plot of the GDOP as a function of the angle of view. For every 

configuration of the array that produced an equivalent angle of view, the GDOP 

could never be lower than this bounding curve. This kind of geometric information 

could be used to 'eyeball' the size of the array necessary to produce a region of 

satisfactorily low GDOP, or used in place of the GDOP as a more easily visualized 

criterion for array optimization. Therefore, the three dimensional equivalent of the 

angle of view needed to be examined, to see if it could be as useful as in the two 

dimensional case. 

To check out this held of view idea, it is necessary to calculate held of view 

(FOV) from the transmitter's and receivers' positions. Although readily visualized 

and easily calculated in two dimensions, the calculation of the FOV angle in three 

dimensions is not so readily done. First of all, the meaning of a three dimensional 

FOV needs to be clearly defined. Then, a means to compute the held of view needs 
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to be found. Finally, once that's done, the analysis is carried out to determine if the 

3-D FOV is a meaningful design tool. 

The three dimensional FOV of the receiver array can be visualized as the 

portion of the transmitter's full field of view occupied by the convex region enclosed 

by the receiver locations. The transmitter's full field of view is defined as the surface 

area of the unit sphere: i.e., 47r. The field of view taken up by the receiver array 

is the surface area of the projection of the receiver array's convex hull onto the 

unit sphere centered on the transmitter. The projection is along LOS directions. A 

way to visualize this is as follows. Imagine the transmitter to be a point source of 

light, and the receiver array convex hull to be opaque. Imagine a sphere centered on 

the transmitter that is large enough to encompass the receiver array in its relative 

position with respect to the transmitter. Now, measure the surface area of the 

receiver array's shadow as projected onto the enclosing sphere. Divide the measured 

surface area by the total surface area of this enclosing sphere to get the fraction of 

the total FOV taken up by the receiver array. Finally, multiply this fraction by 47r 

to get the amount of the transmitter's FOV that is occupied by the receiver array. 

For example: if the transmitter is inside the convex hull of the receiver array, 

then the array occupies the transmitter's entire FOV, which is Air (the surface area 

of the whole unit sphere). If the transmitter is located on the surface of the receiver 

array's convex hull, the array would occupy half of the transmitter's total FOV, i.e., 

2ir. If the receiver is a significant distance outside the receiver array convex hull, then 

the FOV is only a fraction of 47r. (Inside a cave, the earth takes up a person's entire 

FOV. On the earth's surface, the earth takes up about half of a person's entire field 

of view. In space, the earth takes up less than half of the astronaut's total FOV.) 

Now that the FOV has been defined, an algorithm to compute it needs to be 

designed. The following algorithm is used: 
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1. Initialize the problem. Change coordinates to place the transmitter at the 

origin. Move the receivers along line-of-sight directions until they lie on the 

unit sphere. 

2. Check to see if the transmitter is inside the receiver array's convex 

hull or not. This check uses a control algorithm to search for a 'hemisphere 

axis vector.' If it exists, the dot products between this hemisphere axis vector 

and the positions of all the receivers in the array will be greater than or equal 

to zero. If such a vector is found, then all the receivers are in the hemisphere 

defined by the hemisphere axis vector and the plane passing through the origin 

that is perpendicular to this vector. If a hemisphere axis vector is not found, 

then the transmitter is assumed to be inside the receiver array's convex hull 

and therefore the FOV is Air and the algorithm is done. If a hemisphere axis 

vector is found, then the vector is output to the next step in the algorithm. 

3. Sort the receiver array to identify those receivers on the projection of 

the convex hull First, the hemisphere vector is used to rotate the coordinates 

so that all the receivers are in the z > 0 hemisphere. Second, the list of receivers 

is sorted to hnd the receivers on the perimeter of the projection onto the unit 

sphere. Those receivers on the perimeter are used to calculate the FOV. 

4. Calculate the FOV, given that the transmitter is outside the receiver 

array. The area of the spherical polygon is calculated using the list of receivers 

found in the previous step. This is done by hrst breaking the polygon into 

triangles, then using the spherical Heron formula to calculate the area of the 

spherical triangles. The areas of the spherical triangles is added up to produce 

the amount of the transmitter's FOV taken up by the receiver array. 

Although the algorithm is slow, and uses an iterative technique for determin- 

ing if the transmitter is inside the convex receiver array volume, it suffices for the 

purposes of this research. 
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Finally, now that a means of calculating the held of view is on hand, the 

correlation between GDOP in three dimensions and the 3-D FOV can be examined. 

As with the GDOP vs. cond(i7) correlation study, a Monte Carlo simulation in 

Matlab is created to perform this task. The simulation works as follows: First, a 

receiver array is generated. Then a large number of candidate transmitter locations 

(10000+) are randomly generated over a region enclosing all the desired locations for 

the transmitter. This region usually was made to enclose the receiver array as well as 

all the airspace outside of the receiver array in which the GDOP was good. Next, the 

GDOP and FOV are evaluated at each one of these transmitter locations. Finally, 

the GDOP vs. FOV at all these points are plotted, making 'scatter diagrams.' The 

scatter diagrams are correlation plot of GDOP vs. FOV for specific receiver arrays. 

They are evaluated to see if the FOV has enough information content to be a useful 

measure of array geometry for array design purposes. 

The analysis shows two things: the 3-D GDOP vs. FOV correlation lower 

bound is similar to the 2-D case and the patterns on the correlation plots vary with 

different array configurations. Unfortunately, a critical look at both results show 

that the FOV concept is not very useful as a design tool for ground-based receiver 

arrays, for the following reasons. 

The hrst result of the FOV study, as shown in Fig. 3.19, is that the lower 

bound curve of GDOP vs. FOV holds true in three dimensions. The FOV for a 

three dimensional array does give a lower bound on the possible GDOP, regardless 

of array configuration. The simulation does not produce a closed form function for 

the lower bound, but a lookup table can be generated from the simulation data. 

Unfortunately, though, this lower bound on GDOP is not very useful for the SARS, 

due to the severe 'choppiness' of the GDOP as the transmitter approaches the plane 

of the receiver array (as is the case during most of a typical flight profile). The GDOP 

peaks producing the choppiness in the regions of high FOV are well illustrated by 

Figs. 3.19 and 3.21. Indeed, if the transmitter is directly above a receiver, the GDOP 
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Figure 3.19    GDOP vs FOV, Array 1 

Figure 3.21    GDOP vs FOV, Array 2 
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Figure 3.20    Array 1 

Figure 3.22    Array 2 

is very low (around two), but if the transmitter is not directly above a receiver, the 

GDOP at the same altitude could run very high (around ten to twenty). Close to the 

surface of a planar array, it's the maximum GDOP that's critical, not the minimum, 

and, unfortunately, the FOV gives no information on the maximum GDOP. Hence 

the FOV concept is just not very useful for designing a planar array with good GDOP 

at low altitudes. 

The second result of the FOV study is that the GDOP vs. FOV correlation 

pattern is different for different receiver array geometries. Grid arrays have different 

correlation plots than random arrays. Planar arrays show different correlation plots 

than spherical arrays, etc. Looking at the correlation plots of Figs. 3.19-3.22, it's not 
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clear which configuration is better. The best GDOP comes at different FOV, and 

the degree of GDOP choppiness varies as well. There is information in the GDOP 

vs. FOV correlation plot, but it is in a form that is difficult to use. The parametric 

nature of the GDOP vs. FOV plot disguises what kind of airspace of good GDOP 

the arrays might be producing. So the differences in the GDOP vs. FOV correlation 

plots have little usefulness for the SARS array design. 

3.2.3 Summary: Alternate Measures of Geometric Sensitivity. As stated 

above, the results of the examination of alternate measures of geometric sensitivity 

show that the condition number of the H matrix proves to be a useful concept in 

receiver array design, but the held of view concept does not. Cond(i7) provides the 

same general information as the GDOP, but has differences which make it especially 

useful as a measure of geometry for receiver array optimization. The hrst difference 

is that cond(i7) measures the effect of geometry alone, decoupling the problem of 

finding good array geometry from that of choosing the number of receivers needed for 

filtering purposes. The second difference is that cond(i7) provides a worst case limit 

on error magnitude amplification due to measurement geometry, a useful concept 

for array design. The third difference is that cond(i7) may prove more amenable to 

numerical optimization than the classical GDOP. These differences make cond(i7) 

a viable candidate for use in the receiver array optimization cost functions. The 

held of view, on the other hand, is not good enough to be useful for the design of 

ground based GPS systems, due to the problem of choppy GDOP and the difficulty 

of comparing the GDOP vs. FOV plots for different arrays. Although the FOV 

concept does provide qualitative insight into GPS array design, it is just not reliable 

enough to be of much use. In conclusion, both the GDOP and cond(i7) will be used 

as measures of the geometric sensitivity in the optimization of the SARS' receiver 

array, but the FOV will not be used. The results of the optimization will determine 

which measure, GDOP or cond(i7), is better for optimizing the SARS. 
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3.3    Geometrie Sensitivity Cost Function 

Now that the three alternate measures of geometric sensitivity (GDOP, cond(i7) 

and FOV) have been discussed, the choice of which one to use in the cost functions in 

the receiver array optimization programs needs to be made. The previous analysis 

indicates that there are two possibilities: GDOP and cond(i7). Many trial cases 

were tested with both GDOP and cond(i7) during the development of the array 

optimization routines. The results are interesting. As the correlation plots between 

GDOP and cond(i7) from the cond(i7) analysis of Section 3.2.1 indicate, there is 

not much difference between the GDOP and cond(H) for a fixed number of receivers. 

The optimized arrays with respect to both turn out rather similar in shape, as is 

expected. However, the optimization runs using GDOP are much more sensitive 

to initial receiver array configurations than those runs where the cond(i7) is used 

instead. The GDOP seems to make a cost function that is less conducive to numer- 

ical optimization than the cond(i7). The optimization runs using GDOP are very 

likely to 'prematurely converge,' or get stuck on some small minimum in the cost 

function that is nowhere near the global minimum. What this means is that using 

the cond(i7) in the cost function of the array optimization produces arrays that have 

better cond(i7) and GDOP than if the GDOP were used instead. 

This result is very surprising. Numerics difficulties with the GDOP as a cost 

function make it better to use the condition number of H for at least the initial op- 

timization of a receiver array with respect to both cond(i7) and GDOP. Of course, 

since the GDOP and cond(i7) are so highly correlated, an array that produces gen- 

erally good cond(i7) will produce good GDOP, and vice-versa. The difficulty is in 

finding the good receiver array to begin with, and using cond(i7) in the cost function 

has a better chance at finding it. 

The cond(i7) is attractive for reasons other than just numerics. Section 3.2.1 

lists two additional reasons for using cond(i7) First, using cond(i7) decouples the 

problem of array geometry determination from that of determining adequate number 
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of measurements for filtering purposes. The desired number of receivers for filtering 

purposes can be chosen, then a configuration for them can be determined using 

cond(i7) that minimizes geometric sensitivity. Second, the condition number of H 

can be used directly in the design process to specify a worst case accuracy of the 

system. 

Therefore, the condition number of H is used as the measure of geometric 

sensitivity for the receiver array optimization problem. 

3.4     The Receiver Array Geometry Optimization Problem 

The receiver array geometry optimization problem is to find the locations of 

the receivers and transmitter that will minimize the geometric sensitivity of the GPS 

position calculations for the SARS. There are several things that need to be done 

to properly set up the problem: choose the independent variables, choose the cost 

function, and identify the relevant constraints. Once the problem is properly set up, 

a simple four receiver analytical thought experiment is conducted in order to get a 

feel for what kind of results should be expected from the optimization. The problem 

formulation is by far the most important step of the optimization process. 

3.Jf.l    Independent Variables. There are two possibilities in choosing the 

independent variables for the optimization. The independent variables can be either 

the locations of some or all of the receivers, or the desired transmitter position or 

trajectory. One choice is for the transmitter profile points to be the independent 

variables. In the geometric sensitivity analysis of Section 3.1.2, it is found that 

a good flight profile could easily be found for the transmitter with respect to a 

fixed receiver array by simply plotting the cost function (yet to be chosen) in three 

dimensions with respect to transmitter location. The transmitter's flight profile 

would be determined by 'flying' the aircraft (the transmitter) through regions of 

low cost. Though simple, this method has one big disadvantage. It requires a good 
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receiver array to be known, but does not help in finding it. The other choice is to 

make the receiver locations the independent variables. This creates a much more 

difficult problem, because there is no nice, simple way to visualize and hnd the best 

locations to put the receivers. One simply can't plot (or visualize) a cost function 

over the twelve or more dimensions which represent the available degrees of freedom 

associated with the receivers' locations. However, numerical optimization routines 

exist which can handle the high dimensionality of this problem, and can be used to 

solve it. Therefore, the independent variables for the numerical optimization were 

chosen to be the receiver locations. 

3.4-2 Cost Function. The next step in the optimization problem formu- 

lation is the choice of cost function. Results from the geometric sensitivity analysis 

indicate that the best indicator of geometric sensitivity is the condition number of 

the visibility matrix H, rather than the standard Geometric Dilution of Precision 

(GDOP) metric used today in GPS work as a figure of merit. The H matrix is 

composed of the normalized projections of each pseudorange vector along each of 

the coordinate axes, (x, y, z, t), where t represents the time dimension. This is a 

(non orthogonal) transformation of coordinates from a basis of pseudorange vectors 

to a four dimensional Cartesian coordinate basis. This DCM transformation can be 

expressed in terms of component angle cosines, as shown in the following equation 

(for four receivers): 

H 

cos 9\x cos 9\y cos 9\z cos 6it 

cos 62x cos 62y cos 62z cos 62t 

cos 63x cos 63y cos 63z cos 63t 

COS 6ix COS 04y COS 64z COS 64t 

(3.2) 

Now, the condition number of the H matrix is the ratio of the largest singular 

value of H to the smallest singular value of H. Since the H matrix is composed 

entirely of component angle cosines, the condition number is a function of the angular 
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orientation of the pseudorange vectors, not their magnitudes. This means that the 

actual units used in the array optimization are arbitrary, and therefore a working 

design could be scaled up or down if necessary. It also means that the transmitter 

position or trajectory is embedded in the cost function, as the pseudorange angles 

depend on the transmitter location as well as the receiver array configuration. 

The appearance of the transmitter position in the cost function raises the 

question of how to account for movement of the transmitter along a flight profile. 

The method used in this research is to discretize the transmitter's trajectory and to 

evaluate the condition number at the discrete points along it. Then the mean, or 

the maximum, condition number is taken to be the cost function. Two questions are 

raised by this method. The hrst question is which operation on the list of discrete 

condition number points, averaging or taking the maximum, should be used to form 

the cost function. The second question is how might the transmitter flight profile 

influence the outcome of the optimization. 

The choice of mean or maximum sets the tone for the optimization. The mean 

produces a cost function that is better behaved but obviously not as conservative 

as that produced by taking the maximum. Taking the mean is good for obtaining 

a smooth, (relatively) well behaved cost function, but may allow 'spikes' of high 

cond(i7) along the flight profile. Taking the max avoids the cond(i7) spikes (some- 

times), but is not numerically as well behaved, so the optimization runs the risk of 

'hanging up', converging to a local minimum in the cost function which produces an 

array that is obviously neither 'good' nor an expected outcome of the optimization. 

Experience shows that it is better to use the mean(cond(i7)) in the gradient based 

optimization routine because of this risk. Also, if 'spikes' of high cond(i7) are not a 

problem, the array optimized with the mean(cond(i7)) will likely have larger regions 

of low cond(i7) than the array optimized with the max(cond(i7)). Of course, if the 

max(cond(i7)) is truly what is desired to be minimized, then the max(cond(i7)) 

should be used in the cost function.  In this case, the optimization routine may re- 
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quire more carefully designed initial receiver locations and flight profiles in order to 

work properly. 

The choice of flight profile also tends to impact the effectiveness of the opti- 

mization. Certain profiles may cause difficulties with certain optimization methods 

(gradient based or Monte Carlo). The two most glaring examples are profiles that 

cross their paths, e.g., figure eight shaped, and profiles that attempt to fill entire 

regions in order to produce low cond(i7) inside the entire region, rather than just 

along a specific flight profile. 

The profiles with path crossings tend to foul up the gradient based optimization 

routine. The gradient based optimization routine has trouble making the receivers 

cross the 'shadow' (projection onto the ground) of the flight profile. This can lead 

to trouble if the profile's shadow has several crossing points, because the profile may 

'wall off' receivers from moving to the best locations during the optimization process. 

This effect is more pronounced when the discretization is fine. A (very) coarsely 

discretized profile may allow the receivers to slip between the points' projections 

onto the ground and affect the required crossings, thus reducing the risk of 'hangup'. 

Unfortunately, having the profile very coarsely discretized tends to produce spikes of 

cond(i7) in between the points. The best approach seems to keep the fine trajectory 

discretization and do multiple runs with different initial conditions in an attempt to 

allow the receivers to go to the best places. Strictly speaking, that is a method that 

overcomes the trapping of the solution into a local optimum. 

The profiles that attempt to fill whole regions trouble both the gradient and 

Monte Carlo optimization routines. Such regions can be built into the cost function 

by making the flight profile into a grid of points of constant altitude, with the altitude 

being the minimum altitude desired for the low cond(i7) region. This type of profile 

runs the risk of asking too much from a given number of receivers. If there aren't 

enough receivers to cover the ground under the desired region, no placement can 

cure the problem, and the optimizer most likely will not do any good. The resulting 
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arrays are usually spread too thin and are unsatisfactory. If this happens, it must 

be realize that a trade off is needed, and either the size of the desired region must 

be reduced or more receivers must be used in the array. However, even if there are 

enough receivers to potentially cover the desired region, this kind of profile produces 

a horrendous cost function that tends to 'hang up' gradient based searches, if the 

wrong initial conditions are used. This kind of profile is difficult to use with the 

optimization routines. If it is desired, though, several runs using both gradient and 

Monte Carlo techniques should be used, to provide data from which to create a good 

array. 

3.4-3 Constraints. There are many constraints imposed by the 'real world' 

on the receiver array optimization problem. The constraints are receiver altitudes 

(imposed by the terrain), receiver motion, allowed receiver and transmitter locations, 

the boundary of the test range, and the number of receivers. In the fully constrained 

system, i.e., the SARS, the receivers must be located on the ground in fixed posi- 

tions. The transmitter cannot travel below the ground or above its carrier aircraft's 

altitude ceiling, and the number of receivers has an upper limit. Although the fully 

constrained optimization is the desired end product of this effort, it has proven use- 

ful to consider the unconstrained optimization as well, to better understand the 

problem, and to see what effect the constraints have on the resulting receiver arrays. 

3.4-4    Simple   Thought Experiment. To shed light on the optimization 

problem, a simple experiment with four receivers and a fixed transmitter location is 

conducted. 

Let the transmitter be located at the origin, and the four receivers constrained 

to lie on the unit sphere which encloses the transmitter. This can be done without 

loss of generality because the H matrix is a function of only the angular orientation of 

the pseudorange vectors. Let the four receivers' positions be denoted i?I,i?2,i?3,i?4, 

with Ri = (Xi7Yi} Z{) being the vector from the transmitter (at the origin) to the 
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receiver i. The angle component between the zth pseudorange vector and the jth 

coordinate axis is denoted 9ir Since the distance vectors from each receiver to the 

transmitter are all of unit magnitude, the angle cosines in the H matrix can be 

simplified, as shown in the following expression. In this case, the H matrix becomes 

a function of the positions of the receivers Ri on the unit sphere. The H matrix is 

formed as follows: 

H 

cos 

cos B2x 

cos 63x 

cos 

Q\x cos 9\y cos 9\z cos 6it 

62x cos 62y cos62z cos62t 

63x cos 63y cos63z cos63t 

64x COS 64y COS 64z COS 9 4t 

Xi Y1 Zx I 

X2 Y2 Z2 I 

X3 Y3 Z3 I 

X4 Y4 Z4 I 

(3.3) 

It is desired to hnd the receivers' positions Ri that minimize the condition 

number of H. For this simple case, it is possible to obtain the optimal solution. The 

key to the solution is to use the properties of the condition number to simplify the 

problem. 

The condition number of an orthogonal matrix with column vectors of equal 

magnitudes is the lowest possible condition number, 1. Looking at the H matrix, 

one can see that it is impossible for all four columns to have equal magnitudes, but 

it may be possible for the columns to be orthogonal. Looking at the high degree of 

freedom, it seems likely that it can be done. 

If the H matrix can be orthogonalized, the magnitudes squared of the columns 

will be the singular values of H, allowing the singular values of H to be expressed 

in terms of the columns of the H matrix. This allows the singular values of H (and 

hence the condition number) to be expressed as simple functions of the receiver po- 

sitions, considerably simplifying the problem. This works because of the properties 

of orthogonal matrices. The singular values of a matrix H are defined as the square 
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roots of the eigenvalues of HTH. If the matrix H is orthogonal, HTH is a diag- 

onal matrix, because all the non-diagonal terms (dot products between orthogonal 

columns) are zero. The eigenvalues of this diagonal matrix are the elements on the 

diagonal, which are the squares of the magnitudes of the columns of H. Therefore, 

if H can be orthogonalized, its singular values will be the squares of the magnitudes 

of its columns. 

The condition number of a matrix can be expressed as the ratio between its 

maximum singular value and minimum singular value. Clearly, all the singular values 

of H should be as close as possible to being equal, to keep the ratio as small as 

possible. It would be best if all the singular values of H could be equal, but that is 

not possible, because the magnitude of the fourth column of H is always larger than 

the magnitudes of the other columns. The best that can be achieved is an orthogonal 

H matrix with the hrst three columns having equal magnitudes. This will produce 

the lowest condition number possible for the H matrix. 

Let us suppose that everything works out: the columns are orthogonal, the 

receivers still lie on the unit sphere, and the magnitudes of the hrst three columns 

are equal. The magnitude of the hrst three columns can be solved for, and the 

minimum condition number possible for the H matrix can be found. The hrst step 

is to solve for the unknown magnitude of columns one through three, denoted here 

as C. This is done by summing the magnitudes squared of the hrst three columns, 

and noticing that the terms can be rearranged to yield the following equation. 

3c2 = E^2 + Etf + X>2 = £(*2 + if + z?) 
i=l i=l i=l i=l 

Since the receivers must lie on the unit sphere, the right hand side of the equation 

reduces to £-=i(X2 + Yi   + ^2) = (1 + 1 + 1 + 1) = 4.   Therefore, 3C2 = 4, and 

the magnitude of each of the hrst three columns turns out to be C = y4/3.  Since 

the columns are orthogonal, and the hrst three columns have equal magnitudes, the 
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condition number is as low as it can get. The condition number for this postulated 

configuration is given by: 

Cond(H) 
muxalH'H) 

\ mma(H'H)       V 4/3 V3 

The above derivation is not yet a proof, but it does indicate that V3 may well 

be the best possible condition number of the H matrix, given four receivers. In fact, 

the number of receivers does not change the result, as long as there are at least four. 

This implies that the lowest possible condition number for the H matrix may well 

be v3; independent of the number of receivers in the array. 

The backbone of this derivation is that an H matrix could be found that could 

satisfy all the conditions: receivers on the unit sphere, orthogonality, and the hrst 

three columns having equal magnitudes. Although the above constraints on the H 

matrix seem restrictive, it turns out that a matrix satisfying all the conditions is 

easily found, as shown below: 

H  = 

-l 

-1     1      -1 
73       73       73 

73    73    73 

4-4-4-1 73    73    73 

(3.4) 

This matrix represents an equilateral tetrahedron of receivers centered on the 

transmitter, as shown in Fig. 3.23. Numerical optimization applied to this problem 

indicates that V3 is in fact the minimum cond(i7) possible and that the equilateral 

tetrahedron is what produces this 'optimal' condition number. 

This conceptual experiment has shown the basics of the optimization problem 

for a receiver array using the condition number of H as the cost function. Adding 

receivers, constraints, and multiple transmitter points to the optimization greatly in- 
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Figure 3.23    4 Receiver Array, Optimized about the Origin 

creases the complexity of the problem, motivating the use of numerical optimization 

techniques to better attack the problem. 

3.5    Receiver Array Optimization Tools 

Several receiver array optimization tools are used to aid in the optimization of 

the SARS. These tools are: a graphical technique for evaluating receiver array geome- 

try and two numerical optimization techniques used to optimized the receiver arrays. 

The numerical techniques are a Monte Carlo search program for good receiver loca- 

tions, and an array optimization program using Sequential Quadratic Programming 

in the form of constr.m from the MATLAB Optimization Toolbox. These optimiza- 

tion tools are used to gain insight into, then solve the receiver array optimization 

problem. 
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3.5.1 Graphical Analysis of Array Geometry. The first optimization tool 

developed is for graphically evaluating receiver array geometry. The output of this 

technique has already been seen in Section 3.1.2. This tool takes a receiver array 

and a cost function, then generates a 'held' of cost function values as a function of 

transmitter location. Plotted around the receiver array, these fields make it easy to 

evaluate good or bad array geometry. An example of the output from this tool is 

Fig. 3.24. 
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Figure 3.24    Cond(i7) Fields for 4 Receivers in a Tetrahedron 

This tool enables the array designer to evaluate the geometry of a receiver 

array at a glance. It also allows the designer to quickly hand-pick flight profiles for 

the transmitter that will lie within the regions of good measurement geometry. This 

graphical technique is a real help in receiver array optimization: it speeds up the 

task of array evaluation, gives insight into what makes 'good' array geometry, and is 

used heavily throughout the array optimization research to make sense of the results. 
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3.5.2 Numerical Optimization Techniques. Several numerical optimiza- 

tion techniques have been used in this research. The basic techniques used were a 

Monte Carlo search routine, a constrained optimization routine from the MATLAB 

Optimization Toolbox, and combinations of the two. All the numerical optimiza- 

tion routines worked to some degree, but rarely was the cost function well behaved 

enough to allow a globally optimal receiver configuration to be found. Therefore, 

these optimization tools were used mainly to develop insight into the problem of 

receiver placement and to develop 'rules of thumb' of good receiver array design, 

rather than to pursue an elusive global 'optimal' receiver placement. 

Before the detailed discussion of these techniques, one question needs to be 

addressed: How does one evaluate the performance of a receiver array optimization 

technique? Over the course of this research it has been found that there are several 

criteria that can be used to evaluate the performance of the array optimization 

techniques. These criteria are: 

1. Consistency: Are experiments repeatable? Do optimized arrays exhibit similar 

traits? Does the optimization consistently improve the arrays? 

2. Symmetry: Is symmetry preserved/created in the optimized array? 

3. Sensitivity to Initial Array Configuration: To what degree does the configura- 

tion of the optimized receiver array depend on the initial array put into the 

optimization routine? 

4. Effectiveness: Are the optimized arrays satisfactory? How often do 'hang ups' 

occur? How likely is it that better arrays exist? 

Using these criteria, the performance of the two numerical optimization tech- 

niques can be evaluated. 

3.5.3 Monte Carlo Search. The Monte Carlo technique is essentially a 

random search for the best receiver array configuration.  Random search is used to 
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avoid the solution being 'hung up' on one of the (many) local minima of the cost 

function, which has been a significant difficulty in the optimization of planar arrays. 

The technique is as follows: 

1. The initial array is formed. Numerical optimization requires a starting 

point for all the independent variables. 

2. The transmitter trajectory for the cost function is specified. (A list 

of transmitter points) 

3. The desired number of iterations is set. This parameter is the stopping 

criterion for the program. The number of iterations tells the program how many 

times to go through the whole receiver array, moving receivers around one by 

one to look for receiver locations that lower the cost function. The number of 

iterations influences how good the receiver array will be and determines how 

long the program will take. Usually, it takes two iterations (i.e., moving every 

receiver around twice) to converge to a reasonably good receiver array. More 

'polished' results are obtained with six or seven iterations. As this program 

takes hours to run, it is better to set the number of iterations on the high 

side, to ensure complete convergence of the receiver array. (That way it can be 

started in the morning, forgotten about, and will be sure to have good results 

in the evening.) 

4. Generate alternate arrays. One receiver is taken out of the array, and 

alternate positions for that receiver are randomly generated within a desired 

region, i.e., within specified bounds inside a region in space or in a plane. This 

produces many different alternate receiver arrays, differing only by the position 

of one receiver. It has been found useful to change the size of the region in 

which the selected receiver can move during the course of the optimization. The 

most general implementation would be to allow every receiver to move within 

the entire space over the course of the entire optimization, but that would be 
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very time consuming. Good results (and much shorter run times) are obtained 

by reducing the region of movement for reach receiver as the optimization 

progresses. This results in a coarse, medium, and hne optimization being 

performed on the receiver array. This method has obtained consistently good 

results. If the problem were to change, though, the region sizes for the three 

optimization stages need to be adjusted to reflect the new problem. 

5. The cost function is evaluated. For each alternate array, the cost function 

is evaluated, and the array with the lowest associated cost becomes the new 

array. 

6. Repeat from step four. Go back to step four and repeat, choosing the next 

(different) receiver from the array. Repeat until the iteration limit is reached. 

The receiver positions after all the iterations become the 'optimized' receiver 

array. 

Research indicates that this random search technique does in fact improve 

upon the initial array with respect to a given flight profile. An example of this 

performance improvement is shown for a 25 receiver array in Figs. 3.25 and 3.26. 

The performance achieved by this method is evaluated by considering the op- 

timization performance criteria: consistency, symmetry, sensitivity to initial array 

configuration, and effectiveness. 

Consistency: 

The random search technique proves to be fairly consistent. Repeatability is 

not exact, but the optimized arrays for a given transmitter profile exhibit similar 

traits, and the cond(i7) traces over the given flight profiles are consistently improved. 
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Figure 3.25    Initial and Final Receiver Arrays 
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Due to the random nature of the search method, each optimization is not 

exactly repeatable, but the optimization becomes more repeatable as the density 

of points in the allowable region for alternate receiver points increases. If one is 

willing to wait long enough, the results can be made to be fairly repeatable. There 

is a question of whether it is necessary or desirable to have exact repeatability for 

this method. There is no guarantee that moving the receivers one by one to the 

positions that reduce the cost function the most will come close to achieving the 

elusive absolute minimum cost. Having some variability in where the receivers are 

placed each time (caused by a lower density of points) may give the method more 

robustness, at the cost of increasing the time it takes to get useable results (by 

requiring multiple runs for the same initial conditions). In this research, however, a 

middle ground is chosen. The alternate receiver point density is chosen high enough 

to obtain near repeatable (but not identical) results.   This yields fairly consistent 
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results, without losing all the robustness obtainable by evaluating multiple runs, yet 

does not alway require that multiple runs be done in order to have confidence in the 

results. 

The resulting arrays are usually very similar, differing mainly in the exact 

placement of the receivers on the ground, rather than overall array shape/configuration. 

This consistency lends some confidence to the results. 

The cond(i7) traces are consistently improved by the use of this method. A 

good example of this improvement is shown in Fig. 3.26. Every run of this routine 

with some random initial array has improved the cond(i7) trace over the transmitter 

flight profile, at least a little bit. If the initial array is very well chosen so that 

little improvement is possible, however, this routine will at worst leave the array 

unchanged. This means that the routine always works, at least to some extent, and 

is at least guaranteed not to make things worse. While no claim of global optimality 

can be made, it can be said that this optimization technique always either improves 

the array with respect to the flight profile or leaves it unchanged. It cannot diverge, 

by its very nature. 

Symmetry: 

The random search technique is not well behaved with respect to symmetry, 

in most cases. Although the random nature of the search did help to avoid getting 

stuck in small relative minima in the cost function, the very nature of the one-by- 

one movement of receivers tends to destroy symmetry. From the thought experiment 

with four receivers that resulted in the tetrahedron, it is normal to expect that a 

globally optimal array will have a degree of symmetry. The lack of symmetry in 

the optimized receiver arrays suggests that they are not truly 'optimal,' but simply 

better than they were before. This is not an unexpected problem, and does not 

prove to have a major negative impact on the design process. Much insight into 

good receiver array design can be gained simply by seeing the kinds of changes that 

improve the initial arrays. 
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Sensitivity to Initial Array Configuration: 

The optimized arrays produced by the random search technique are not heavily 

dependent on their initial array configurations. Given enough iterations, the arrays 

generally converge to similar configurations and similar minimum costs, if the arrays 

have similar numbers of receivers and the cost functions use the same transmitter 

trajectory. It is not known whether this is a result of the 'optimality' of the solutions 

or just an artifact of this optimization method. Most likely, this method can take 

the cost down to within a neighborhood of the global minimum, but gets 'hung up' 

on some nearby local minimum because it can only move one receiver at a time. 

Although the optimized arrays tend to look similar, they are never exactly the same, 

even when the initial arrays and cost functions are identical. Possibly, if the random 

search uses enough points, the same results would be achieved every time for identical 

initial arrays, but the amount of time it would take to investigate this is prohibitive, 

so it was not done. 

Since this technique takes an almost arbitrary initial array and improves it 

just about to the tradeoff between receiver spacing and aircraft altitude (for pla- 

nar arrays), perhaps it could be used to obtain good initial conditions for more 

mathematically rigorous optimization techniques. Since those techniques tend to be 

sensitive to initial conditions, this idea seems plausible. Experimentation has shown 

this idea to have merit in circumstances where symmetry cannot be used to advan- 

tage, or where the cost function is so poorly behaved that initial array configuration 

totally determines whether the result is worthwhile. An instance of note is when the 

GDOP is used in the cost function instead of the condition number. The GDOP 

function does not lend itself towards global optimization by the numerical optimiza- 

tion routines provided in MATLAB, often 'hanging up' with no appreciable changes 

in the receiver array. Using the results of the Monte Carlo technique to initialize the 

MATLAB optimization programs resulted in better final arrays than were generally 

achieved with the input of arbitrary initial conditions. 
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Effectiveness: 

The random search technique proves quite effective in optimizing receiver ar- 

rays with respect to a given cost function. Part of this effectiveness is due to the its 

inherent robustness. The technique is rather insensitive to initial array configura- 

tions, complicated transmitter trajectories, and constraints on the receiver locations 

(imposed by maps, signal strengths, etc.). Also, the very nature of the technique 

prevents it from making the array worse. The worst this method can do is to leave 

the array in its initial form. This robustness makes it likely that a satisfactory re- 

ceiver array will be found, if it is possible, given the constraints on the problem. 

Whether a satisfactory array can be found or not depends mainly on the feasibility 

the cond(i7) levels desired throughout the flight profile. A desired level of cond(i7) 

may be lower than is possible for the given flight profile and receiver array. For 

example, if the profile is at too low an altitude, the number of receivers allowed in 

the array may not be enough to adequately cover the profile. This is really not a 

fault of the optimization routine; it is simply an illustration of the tradeoffs involved 

in receiver array design. Running the optimization routine a few times gives one a 

feel for what is possible and what is not, for a given number of receivers and flight 

profile, so this has not proved to be too much of a problem. 

There have been some cases in which the random search routine has been 

especially effective, and especially ineffective. The random search technique is es- 

pecially effective at improving receiver arrays given complicated flight profiles or 

stringent design constraints, such as a very low minimum altitude or a small number 

of receivers in the array. The random search technique does not use cost function 

gradient information, so it has no problems with asymmetric or complicated flight 

profiles. It just puts receivers wherever the locations lower the cost the most, so it 

will work to some extent even for difficult problems. This method is the one to use 

for a difficult or poorly behaved optimization problem. The unusually ineffective 

cases occur when the optimization parameters are poorly chosen. This optimization 
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method requires the transmitter points to be spaced closely together and the alter- 

nate receiver points to be of sufficient density and chosen over a large enough region 

(at first) to ensure the method's convergence on a good result. Otherwise, although 

the method won't make the array worse with respect to the specified profile, it might 

not improve things very much, and may make the array totally useless for anything 

else (thus wasting the designer's time). The generation of 'optimally stupid' results 

is the main hazard of optimizing a receiver array with respect to one flight profile, 

and can frequently happen with this technique if the optimization parameters are 

poorly chosen. Therefore, if the routine seems of little use on some problem, the hrst 

things to check are the optimization parameters. 

Summary: 

The random search method of receiver array optimization has proven to be 

quite useful in this research due to its relative insensitivity to initial conditions, its 

ability to avoid 'hangups' on relative minima early in the optimization, its consis- 

tency, and its value as a tool to find good initial conditions for using more rigorous 

numerical optimization routines. With the parameters properly chosen, this opti- 

mization routine is an effective tool for the optimization of receiver arrays, especially 

for difficult cases. Unfortunately, there is no indication that the arrays optimized 

by this technique are in fact the best possible. Therefore, this tool should not be 

used (by itself) if it is desired to find the elusive globally optimum array for some 

flight profile. In that case, its use should be limited to finding good initial conditions 

for a more rigorous optimization routine or being a check on the results. (If the 

random search finds a better array than the supposed optimal one by moving one of 

its receivers around, then the array in question is not really optimal.) 

3.5.4 SQP Optimization Routine: constr.m. The MATLAB optimization 

package includes several numerical optimization routines. One of these, constr.m, 

has proven to be useful for receiver array optimization.   The optimization routine 
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performs constrained optimization on a vector of independent variables with respect 

to a user defined objective (or cost) function. The routine uses a sequential quadratic 

programming (SQP) method to search for the minimum cost. This method has 

proven to be quite successful in optimizing the receiver arrays, given good initial 

conditions and certain kinds of flight profiles. 

The constr.m routine is designed to take a cost function and a vector of initial 

values for the independent variables, and find the values of the independent vari- 

ables that minimize the cost within some neighborhood. By itself, it is a generic 

optimization tool. A program had to be constructed around constr.m in order to 

optimize receiver arrays. The program works as follows: 

f. The initial receiver array is formed. It could be hand picked, randomly 

generated, data from previous experiments, etc.. The initial receiver array 

consists of the initial conditions for the independent variables used in the con- 

str.m routine. The initial list of receiver positions is decomposed into one long 

vector, the initial conditions vector to be used in the constr.m routine. 

2. The flight profile for the transmitter is formed. The flight profile is used 

to form the cost function for the optimization. As this is a numerical optimiza- 

tion, the flight profile is discretized into points, as if there were transmitters at 

many points simultaneously along the desired flight profile. It is the mean or 

maximum condition number of all the H matrices formed at these transmitter 

points that becomes the cost function for the optimization. 

3. constr.m is run. The initial conditions vector and the transmitter flight 

profile points are fed into the constr.m routine, which then finds the vector of 

independent variables that minimizes the cost within some neighborhood. 

4. The receiver array is reformed. The vector of independent variables that 

minimize the cost function is taken from constr.m and reformed into an array 

of receiver positions. 
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5.  The results are plotted.  The receiver array is plotted, along with contours of 

cond(i7), to show the array's performance. 

The utility of this technique can be evaluated by considering the four criteria 

of consistency, symmetry, sensitivity to initial array configuration, and effectiveness, 

as is done for the Monte Carlo technique. 

Consistency: 

The optimization routine based on constr.m proves to be fairly consistent. 

Experiments are always repeatable for a given set of initial receiver locations and 

transmitter points. Optimized arrays tend to have similar characteristics, if their 

initial array configurations or their flight profiles are similar. This method consis- 

tently improves the array with respect to the given cost function, at least somewhat. 

The only way in which this method is not consistent is that using different initial 

conditions or flight profiles may totally change the resulting array. Even so, this 

method is generally more consistent than the Monte Carlo technique. 

Symmetry: 

This method is quite well behaved with respect to symmetry. Symmetric ini- 

tial conditions and symmetric flight profiles generally result in symmetric optimized 

arrays. As the lowest cond(i7) at a single point is obtained by a tetrahedral array, 

which has a high degree of symmetry, it stands to reason that the optimum array for 

two or more transmitter points arranged in a symmetric pattern should be symmet- 

ric as well. The fact that symmetry is preserved for the most part using this method 

implies that this technique has the potential for producing arrays that are close to 

being globally optimal, given the proper initial conditions. 

If the initial array is not symmetric, some degree of symmetry is imposed 

on the array through the optimization process. Perfect symmetry is not restored, 

not surprisingly, but generally the resulting array has some degree of symmetry, 

even if the initial array does not.   Of course, this effect can only work with those 
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receivers that are allowed to move by the topography of the cost function's (many 

dimensional) 'surface'. It has been found that if the receivers are too close to the 

horizon throughout the entire flight profile, they are not moved very much by the 

optimization process. Therefore, those receivers will keep whatever configuration 

they had in the initial array, symmetric or not. These results indicate that symmetry 

is indeed an important design parameter, as expected. 

Sensitivity to Initial Array Configuration: 

Unfortunately, the constr.m routine is very sensitive to initial array configura- 

tion. The initial receiver array that is fed into this routine determines what results 

are obtained. The cost function for a planar array simply has too many dips and 

peaks in it for a global optimization to be consistently found, using gradient infor- 

mation. The fewer dips and peaks there are in the cost function, the less sensitive 

this routine is to initial array configuration. With a single transmitter point and a 

small number of receivers (four to six) in the array, this routine finds solutions that 

look very good. With only four receivers and one transmitter point, this routine 

finds the tetrahedron in unconstrained optimization, and produces a consistent trig- 

onal pyramid shape in the optimization constrained to the plane, for different initial 

conditions. Unfortunately, when the number of receivers is increased to more than 

ten or so, the optimization often gets hung up on local minima of the cost function 

that obviously are not the best possible. Sometimes one can hand pick better arrays, 

sometimes. Since there need to be more than ten receivers on the ground for a good, 

large planar array, the placement of initial conditions is critical. 

The initial array configuration problem can be overcome in three ways: running 

multiple runs of the same flight profile with different initial arrays, hand picking the 

initial arrays using general guidelines for good array design, or running the Monte 

Carlo optimization routine hrst on some arbitrary initial receiver array to refine it 

for the constr.m optimization. Each of these methods has its merits, and, in a search 

for the global optimum, it would be wise to do all three and compare the results. 
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Once the results are in, they can be put as initial conditions into the Monte Carlo 

optimizer (which does not use gradient information) to see if an even better array 

can be found. Since the Monte Carlo optimizer does not use gradient information, it 

may be that the result of this hybrid optimization could be run once more through 

the constrained optimization (constr.m) to hne tune it even more. After that many 

iterations, it is likely that an array very close to the global optimum could be found. 

Effectiveness: 

The effectiveness of this optimization technique varies. When the initial arrays 

are properly (luckily?) chosen, this routine is very effective, as shown in Fig. 3.27. 

With an unfortunate choice of initial array, this optimization is not very good at all, 

as shown in Fig. 3.28. Sometimes, the technique does not even converge, wasting 

time, and forcing a change in flight profile, initial array, or tolerance parameters 

such as maximum number of iterations. Since the progress of the optimizer can be 

monitored from time to time on the screen, one can sometimes tell when it is not 

working well, and 'kill' it early, so it can be rerun without wasting as much time. 

When the initial arrays are properly chosen, however, the optimizer can do 

a very good job. When it works, its results have more weight than the results of 

the Monte Carlo optimizer, since the constr.m optimizer is guaranteed to hnd a 

minimum, local or otherwise, but there are no guarantees that the Monte Carlo 

optimizer will find even that. This routine is also quite good at hne-tuning a hand 

picked array or one optimized by the Monte Carlo method. It will not move the 

receivers around much, most likely, but the cond(i7) profile will show improvement, 

often being smoother or having spikes that are not as large. 
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Figure 3.27    Initial and Final Arrays - Good Run 
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Figure 3.28    Initial and Final Arrays - Constr.m Got 'Hung Up' 
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Summary: 

The array optimizer based on constr.m can be capricious (due to the cost 

function), but it is worth using it for the chance of obtaining the really good results 

that are possible when all the conditions are right. Although there is high sensitivity 

to initial receiver array configuration, every experiment is repeatable, and the results 

are at least guaranteed to be at some minimum in the cost function. This optimizer 

is the right one to use for hne tuning an array, or in a search for the elusive globally 

optimum array for some specific flight profile. 
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IV.   Results and Analysis: Receiver Array Optimization 

This chapter shows the results of the numerical optimization research. The 

experiments fall into two main categories: the optimization of receiver arrays with 

respect to a single hxed transmitter design point, and the optimization of receiver 

arrays with respect to multiple transmitter points (discretized trajectories). The 

results of the optimizations with respect to the single transmitter point are discussed 

first. The array optimization problem is simplified due to the presence of only a 

single transmitter point in the cost function. The optimization program based on 

constr.m is modified to take advantage of the simplicity. This modified program is 

used to solve the array optimization problem for a single transmitter point, providing 

much insight into good array design. Next, the more complex multiple transmitter 

point optimization problem is discussed. To avoid getting bogged down in excessive 

details, only three representative flight profiles are considered for the transmitter 

profiles: a circle, a figure eight, and a grid pattern of points. Several initial receiver 

arrays are tried, for each profile, and the results of the optimizations are shown and 

discussed. Once the results of the array optimizers for the three flight profiles are 

discussed, the knowledge gained can be combined with the insights from the single 

point optimization to develop a set of guidelines to aid in the quick and effective 

optimization of planar arrays with respect to some arbitrary flight profile, and vice 

versa. 

4-1     Optimization With Respect to a Single Transmitter Location 

The hrst flight profile considered for the transmitter is the most elementary 

one: a single, hxed point. This case is especially easy to set up and analyze due to its 

simplicity. Although a simple case, much can be learned about good receiver array 

design by finding the receiver array configurations that produce the lowest condition 
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number for this case, and looking at how the results can be applied to array design 

using more complicated flight profiles. 

As was shown in the thought experiment earlier in this chapter, the receiver 

array optimization problem with respect to a single, fixed transmitter location can 

be posed in a simplified form that is most insightful. Having only a single transmitter 

point means that there is only one H matrix under consideration, which allows the 

angular position terms in the H matrix to be reduced to simply position terms 

(on the unit sphere). This is done by recognizing that the projection of any array 

of receiver locations along receiver-transmitter line of sight onto the unit sphere 

centered on the transmitter yields a new receiver array that will have the same H 

matrix. Only the angular orientation of the receivers from the transmitter's point 

of view affects the H matrix. This new receiver array can be optimized much easier 

than the old one, and can be re-projected out onto some surface (like the ground 

plane, or some other surface of allowable receiver locations) when the optimization 

is complete. Now that the receivers are all on the unit sphere, the angle component 

cosines that form the elements of the first three columns of H can be reduced to 

simply position components of the receivers' location, as shown for the four receiver 

case in the equation below. 

H 

cos Q\x cos 9\y cos 9\z cos 6it 

cos 92x cos 62y cos 62z cos 62t 

cos 63x cos 63y cos 63z cos 63t 

COS 64x COS 64y COS 64z COS 9 4t 

Xi Y1 Zx \ 

X2 Y2 Z2 I 

X3 Y3 Z3 I 

X4 Y4 Z4 I 

(4.1) 

With the H matrix now written as a simple function of the receivers' po- 

sitions, the optimization process can be easily performed. Two main cases were 

tested for this simple problem: the fully unconstrained case and the case where the 

receivers were constrained to all lie in one plane. Both cases were handled well by the 
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constrained optimization routine (constr.m). It performs so well on this simplified 

problem that the Monte-Carlo search method was not needed. However, the program 

that sets up the constr.m routine did need to be changed to take advantage of the 

simplified problem. This modified program works as follows: 

1. The initial receiver array is formed. The initial receiver arrays are formed, 

either by random generation or by hand-picking. 

2. The array is projected onto the unit sphere. The initial receiver ar- 

rays are projected onto the unit sphere, forming the initial conditions for the 

independent variables in the optimizations. 

3. The cost function is formed. The cost function is formed. For this case, 

the cost function is simply the condition number of the H matrix formed using 

the receiver positions on the unit sphere. 

4. const.m is run. The constr.m routine is run, which finds a vector of indepen- 

dent variables that minimize its objective function, subject to constraints. For 

this problem, the independent variables are the receivers' position components 

along the coordinate axes, and the cost function is the condition number of the 

H matrix. For the unconstrained optimization, the only 'constraints' on the 

variables are that the receivers must lie on the unit sphere, which just ensures 

that a valid H matrix is found. For the optimization in which the receivers 

must stay in one plane, additional constraints are needed to force the receivers 

to be able to be projected back onto the plane after the optimization. These 

constraints are very simple: the receivers' positions are constrained to be in 

one half of the unit sphere, i.e., the z < 0 hemisphere. 

5. The results are plotted. The resulting arrays are taken from constr.m and 

plotted with cond(i7) contours to see their performance. It has been found 

that it makes sense to keep the receivers in spherical array format, rather than 

to project them back out onto some surface of desired receiver locations (like 

the ground plane). For a spherical surface, this is so because such a projection 
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would be identical in all but scaling, so there's no reason to do it. For a planar 

array, the projections could be useful but are problematic because there are 

always a few receivers on the horizon that mess up the projection. In either 

case, it is possible to analyze the array on the unit sphere just as well, so 

nothing has been lost. 

When looking at the optimized receiver array shapes, a word of caution is in 

order. The receivers can be moved along their line of sight vectors to and from 

the transmitter without affecting the condition number. The array shapes shown 

in the following results are not the only ones possible. Changing the magnitudes 

of the LOS vectors can significantly distort the way the arrays look, but will not 

change the condition number of H near the transmitter design point. This can be 

a useful property, and should not be ignored. Although the actual optimization of 

the receiver arrays proceeds best with the receivers constrained to lie on a sphere, 

an array projected back onto a different surface (like a plane or ellipsoid) may be 

better for a particular application. 

Jf.1.1 Results: Unconstrained Optimization. Many different initial receiver 

arrays were run through the unconstrained optimization routine. The number of 

receivers ran from just four to 25, and many different initial array configurations 

were tried. Regardless of the number of receivers in the array, the results of the 

optimization were all quite similar. The results shared two things: symmetry and 

minimum condition number. The optimized receiver arrays had some degree of 

symmetry (at least for small numbers of receivers), and all the optimized arrays 

produced H matrices whose condition numbers were around \/3. 

It turns out that the optimal arrays have some degree of symmetry, at least if 

the numbers of receiver in the arrays are small. This symmetry is readily apparent 

with arrays of few receivers. Figs. 4.1 and 4.2 show the optimal configurations of a 

four receiver array and a hve receiver array. The four receiver array is configured in 

a tetrahedron, with the origin at its center. The hve receiver array is configured in a 
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Figure 4.1     Optimal Array, 4 Receivers Figure 4.2    Optimal Array, 5 Receivers 

square pyramid. For these cases with low numbers of receivers, the array shape and 

symmetry are apparent. It is much more difficult to hnd the shape and symmetry of 

an array with a large number of receivers, such as the array shown in Fig. 4.3, though 

the symmetry may indeed exist. This difficulty may be caused by the non-uniqueness 

of the optimal receiver array configurations, given large numbers of receivers. A good 

example of this is that of Fig. 4.4, an optimal eight receiver array formed out of 

two optimal four receiver arrays (two tetrahedra). It is difficult to see the overall 

symmetry of this array, and could be impossible if the tetrahedra were of widely 

different orientations (or if the five receiver optimal array were used instead of one 

of the tetrahedra). The 25 receiver array shown in Fig. 4.3 could well be formed 

out of five tetrahedra and a square pyramid, five square pyramids, or some more 

complicated combination of optimal arrays, just so long as the number of receivers 

in the array is 25. Therefore, no attempt is made to describe optimal shapes or 

configurations for arrays with large numbers of receivers. Many shapes are possible. 

In large arrays, the symmetry is at the component array level, not over the entire 

array. 

In addition to a degree of symmetry, all the optimized arrays produced H ma- 

trices that had condition numbers close to (within 6 percent of) \/3. This supports 

the results of the thought experiment conducted earlier this chapter.   The lowest 
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possible condition number for the H matrix is y3- Since the optimized arrays 

produced H matrices which had the minimum condition number, it is reasonable 

to believe that these optimized arrays are in fact globally optimum with respect to 

cond(i7). 

Design Insights: 

Several array design insights are found from looking at the unconstrained op- 

timization results: 

1. Cond(i7) is independent of the number of receivers. The minimum 

condition number can be obtained with as few or as many receivers desired, as 

long as there are at least four receivers in the array. Therefore, for this case 

of unconstrained receiver positions, the number of receivers can be decided en- 

tirely by other design issues than the cond(i7), (such as filtering considerations 

or logistics). 

2. The array should be re-designed when changing the number of re- 

ceivers. Given an already optimal array, if it is desired to change the number 

of receivers in the array, it is better to re-design the array using the new num- 

ber of receivers than to simply add a receiver somewhere. In general, simply 

adding a receiver somewhere to an optimal array will raise the condition num- 

ber somewhat. However, adding two optimal arrays together does produce 

a composite array that is optimal also. The thing to keep in mind is that 

receivers should not be added or subtracted from these arrays without some 

thought, if low cond(i7) is desired. Unlike the GDOP metric, the cond(i7) 

may actually increase with the addition of another receiver to the array, if the 

array is not redesigned as well. 

3. The farther the receivers are from the transmitter, the better.   To 

see this, look at Fig. 4.5, which shows cond(i7) as a function of transmit- 

ter position around a hxed tetrahedral array. The cond(i7) is at a minimum 

at the array's center (the transmitter design point), and grows larger as the 
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transmitter moves away from the center. Once the transmitter goes outside the 

array to any appreciable extent, the condition number grows large. Therefore, 

if low cond(i7) is desired, the transmitter must remain within the array. If 

the application allows it, there is an easy way to ensure that the transmitter 

remains inside the receiver array: simply make the receiver array so big that 

it encompasses the entire region in which the transmitter will move. This will 

enlarge the region of low cond(i7) until it fills the entire region through which 

the transmitter moves. 

4-1.2    Results:  Planar Array Optimization. Many different initial arrays 

were run through the optimization, just like for the unconstrained case. This con- 

strained optimization was a bit more sensitive to initial array configuration than the 

unconstrained case, so more runs were done with different initial arrays to find the 

best planar arrays for various numbers of receivers. The results of the planar array 
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optimization were even more alike than those of the unconstrained optimization. The 

optimized arrays all had the same overall configuration, and produced H matrices 

that had similar condition numbers. Although the minimum cond(i7) produced was 

higher than the minimum possible, it was not that much larger, indicating that a 

planar array is really not that much worse than a fully three dimensional array, at 

least with respect to a single, fixed transmitter point. Unfortunately though, the 

low cond(i7) region around the transmitter design point of a planar array is much 

smaller than that of a three dimensional array. This heavily impacts the design of 

planar arrays in cases of appreciable transmitter motion (such as the SARS). 

The optimized planar arrays all were of similar configuration. Figs. 4.6 and 4.7 

show the basic configuration that was shared by all the arrays. Although the receiver 

arrays, were designed on the z < 0 hemisphere as discussed earlier, these figures show 

the receivers projected back onto the ground plane for clarity. To correctly interpret 

these plots, it must be understood that the transmitter is located a small distance 

directly above the origin (above the plane of the array). The transmitter location is 

not shown in the figures because it was found to diminish the figures' clarity. 

1 

0.5- 
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-0.5- 

-1 

X     Receiver 

— Horizon 

Radius Vector 

Figure 4.6     Optimal  Planar   Array,   4 
Receivers 

x    Receiver 

— Horizon 
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Figure 4.7    Optimal   Planar   Array,   6 
Receivers 
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As can be observed, the best configuration is to have at least one receiver 

directly below the transmitter (the receiver(s) at the origin), and have the rest out 

along the horizon. For a four receiver array, three receivers are located on the 

horizon, spaced at 120 degree increments, and the fourth receiver is directly below 

the transmitter. With five receivers, the configuration is identical, except that there 

are two receivers on the ground directly underneath the transmitter. For six receivers, 

the best configuration is four receivers out on the horizon, as shown in Fig. 4.7, with 

the remaining two directly underneath the transmitter. As the number of receivers 

grows, this same kind of configuration is found. It is surprising that having two 

or more receivers in exactly the same location can improve the condition number, 

albeit a small amount. However, the improvement in cond(]itH) is small enough 

that such duplicate receiver positions can be ignored, saving the extra receiver(s) 

for a better location with respect to other design criteria like line of sight, or carrier 

phase ambiguity estimation. 

As with the unconstrained optimizations, symmetry is apparent in arrays with 

small numbers of receivers, but is lost when the number of receivers gets large. The 

configuration stays the same, however, as is shown by Fig. 4.8: The lowest cond(i7) 

is produced when most of the receivers are placed all around the transmitter out 

on the horizon and the rest are all lumped together at one point underneath the 

transmitter. The difference in cond(i7) produced by adding a receiver to the ring on 

the horizon or adding one to the pile directly underneath the transmitter is negligible. 

The cond(i7) produced by these arrays ranged from 2.41 to 2.5. This is not 

a significant variation in cond(i7). The minimum cond(i7) of 2.41 is slightly higher 

than the 1.732 global cond(i7) minimum, but not very much so. This indicates that 

a planar array is potentially not much worse than a fully three dimensional array, at 

least if the transmitter's motion is limited to near the design point. 
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Unfortunately, limiting the transmitter to the region close to the design point 

proves much more restrictive in planar arrays. This problem is illustrated by Fig. 

4.9, a contour plot of the cond(i7) helds at one mile altitude over a four receiver 

planar array. This array is approximated from the optimal planar array shown in 

Fig. 4.6. The receivers set in the circle of thirty mile radius represent receivers on 

the horizon, and the receiver at the origin represents the receiver that needs to be 

directly below the transmitter. The transmitter design point is at one mile directly 

above the origin. This is indeed an approximation of the optimal four receiver pla- 

nar array, but it does produce a low cond(i7) of 2.6 at its design point, so it is a 

good approximation. As can be seen, although the cond(i7) is still quite low at the 

design point, the cond(i7) increases rapidly as the transmitter moves horizontally 

away from its design point. Instead of being able to move over the entire width of 

the array (at that altitude) and still obtain a cond(i7) less than hve, as is the case 

with the tetrahedron of Fig. 4.5, the transmitter must stay within a two mile circle of 
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Figure 4.9    Optimized 4 Receiver Planar Array, Cond(i7) Fields Plot 

the center receiver. Therefore, although the cond(i7) values are very similar at the 

design point, the tetrahedral array allows much more receiver movement for a given 

array size than the planar array does. 

Design Insights: 

Several planar array design insights are found from looking at the optimization 

results: 

1. Cond(i7) is independent of the number of receivers in the array, 

as long as the transmitter does not move. The cond(i7) stays around 

2.45, regardless of the number of receivers in the array. Of course, Fig. 4.9 

shows that if it is desired for the transmitter to move around a lot, then more 

receivers are needed in order to make the low cond(i7) region large enough to 

be satisfactory. 
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2. The only receivers that matter in a planar array are ones that are 

directly below the transmitter or on the horizon. Adding receivers 

anywhere else does not improve the cond(i7). This can be used to advantage 

in planar array design: There is no need to put receivers anywhere other than 

directly underneath the flight trajectory and at points out along the horizon. 

Also: there need only be three or four receivers out on the edge of the array 

(the horizon), as long as the transmitter doesn't get too close to them, or they 

run the risk of losing line of sight due to the terrain. 

3. The best planar array performance is at the maximum altitudes the 

test aircraft can attain. Like the three dimensional arrays, planar arrays can 

be expanded in all dimensions to increase the size of the low cond(i7) region 

about the transmitter design point. Unfortunately, the receiver that needs to 

be the farthest from the aircraft is the one directly underneath the transmitter. 

The farther this receiver is from the transmitter, the larger the array's low 

cond(i7) region will be. The only way to increase the distance between this 

receiver and the transmitter is to fly the aircraft at higher altitudes. Therefore, 

the transmitter altitude is a critical parameter of planar array design. It 

should be as high as possible. 

4. A planar array can be significantly improved by flying a receiver high 

above the test aircraft over the array. A fixed planar array cannot achieve 

the low cond(i7) of the tetrahedral array, and its region of low cond(i7) is very 

small, comparatively. This problem can be eliminated if the receiver directly 

below the transmitter could be made to move along with the transmitter, al- 

ways remaining directly below the transmitter throughout the transmitter's 

flight. Of course, no receiver on the ground would be able to keep up with an 

aircraft, but the same geometry is obtained when a receiver is mounted onboard 

a second aircraft and flown directly above the test aircraft. This configuration 

would cut the required number of receivers for low cond(i7) down to five or 
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six. The position of the flying receiver would need to be found, but this could 

be found by mounting a transmitter on the same aircraft as the one with the 

receiver. The pseudorange equations could be simultaneously solved to obtain 

the positions of both the moving receiver on the second aircraft and the original 

transmitter on the first aircraft. This configuration allows high accuracy to be 

obtained in low altitude flights, something not obtainable by a fixed, ground 

based array. Although this design entails using a receiver on a balloon, aircraft, 

or satellite as well as the receivers on the ground, the performance of the array 

is so much improved that this technique should be considered if high accuracy 

is desired. 

4-2    Optimization With Respect to Multiple Transmitter Locations 

Now that basic design insights have been gained from the results of the single 

transmitter point optimizations, the more complicated planar receiver array opti- 

mization problem with multiple transmitter points is attacked. Using the Monte 

Carlo search program and the program based on constr.m that were developed in 

this research, the receiver array optimization problem is numerically solved with 

respect to several representative flight profiles and initial arrays. While no global 

solution for all cases is found, the arrays optimized for these cases, representative of 

many found over the course of this research, show how to design good, if not globally 

optimum receiver arrays for practical use with flight testing. This discussion looks at 

the difficult problem of planar receiver array optimization. It applies what has been 

learned over the course of this research, and shows the kinds of array configurations 

that could be used to minimize the geometric sensitivity of ground based GPS-like 

systems like the SARS. 

4-2.1    Initial Arrays and Transmitter Profiles. During the course of this 

research, a wide variety of initial receiver arrays and flight profiles were used in the 

optimization programs, with a correspondingly wide variety of results. The choice of 
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initial array configurations and transmitter flight profiles can have profound effects 

on the outcomes of the optimization programs. Although it is not possible to show all 

the cases tried, the results fell into several general categories, which can be adequately 

covered by several representative initial arrays and flight profiles. Three initial arrays 

and three flight profiles are shown. The three initial receiver arrays are a receiver 

grid, an irregular, hand-picked receiver array, and an array that is the result of a 

previous Monte-Carlo array optimization. These initial arrays are shown in Figs. 

4.10-4.12. 

The three flight profiles are a circle, a figure eight, and a grid pattern that 

fills an entire region. The three initial arrays are so chosen because they reflect the 

three main kinds of initial array that have commonly been fed into the optimization 

routine: a symmetric, orderly pattern, an irregular mass of points, and an array 

that is already pretty good but may be improved. The flight profiles were chosen to 

reflect either typical test profiles, as were the circle and figure eight, or to generate 

a region of low cond(i7) that could be used for any arbitrary profile, as was the case 

for the grid. The flight profiles are shown in Figs. 4.13-4.15. 

All the flight profiles are designed at a constant altitude of one mile. Although 

this is artificial, it makes sense for the optimization process. As was found by plotting 

the cond(i7) fields around a receiver array, the cond(i7) becomes better behaved in 
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Figure 4.15    Transmitter Profile: Grid Pattern 

a planar array the higher the aircraft can get (since the best areas occur above 

aircraft altitude limits). Therefore, only the minimum altitude needs to be included 

in the design. This altitude of one mile above the ground has been found to be a 

reasonable lower limit for flight profiles, based on a maximum of 25 receivers in the 

array, a desired cond(i7) between ten and twenty, and a profile that allows at least 

twenty minutes or so of flight time (going 300mph) over the array. Lowering the 

minimum altitude would either cause the number of needed receivers to increase, 

force acceptance of a larger cond(i7), or decrease the extent of the array. Doubling 

the density of receivers on the ground allows the aircraft's minimum altitude to come 

down by a factor of two, but as one can see, this quickly leads to point of diminishing 

returns. Doubling (or squaring) the number of receivers to get the aircraft minimum 

altitude down 2500 feet does not seem worth it. It seems better to just make the 

aircraft fly at least one mile up above the array. If high accuracy at low altitudes is 

desired, additional techniques need to be used to get the cond(i7) down to reasonable 

limits without ridiculous numbers of receivers. 
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4-2.2    Results of the Array Optimization. The results are generated by 

pairing an initial array with a flight profile, feeding them into the optimization 

programs, then running the programs. Given the two optimization programs, the 

three initial arrays, and the three flight profiles, a total of eighteen optimized arrays 

are formed. All of these need not be shown, as some cases are duplicates or are not 

very useful. Of all eighteen cases, the ones of note are: 

f. The three arrays produced by the Monte-Carlo optimizer (one for each flight 

profile). The Monte-Carlo optimizer proves unaffected by initial array config- 

uration, so only one M.C. optimized array per flight profile needs to be shown. 

The others are duplicates. These three cases show the kind of results typical 

to the M.C. optimizer. 

2. The arrays found by using the grid and irregular initial arrays with the constr.m 

optimizer for all three flight profiles. The constr.m optimizer is sensitive to 

initial array configuration, and the shape and number of points in the flight 

profile. These six cases illustrate the kinds of results typical to the constr.m 

optimization program. 

3. The array found from using the constr.m optimizer on the results of the M.C. 

optimization with respect to the figure eight profile. This case shows how the 

constr.m optimizer can take a pretty good array and 'tune' it to get improved 

performance. 

The resulting optimized arrays are shown in the following figures. The figures 

are organized with respect to flight profile. For each flight profile, the two initial 

arrays are shown superimposed on the profile, the arrays optimized by the constr.m 

and M.C. optimization programs are shown. Then the traces of cond(i7) over the 

profile for both initial and optimized arrays are plotted. This way, the performance 

of the two optimization routines can be compared and the resulting arrays evaluated 

in turn with respect to each flight profile. 
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Figure 4.19    Results from M.C. Search with Circle profile 
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Figure 4.23    Results from M.C. Search with Figure Eight profile 
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Figure 4.27    Results from M.C. Search with Grid profile 

The results are summarized as follows: 

f. The constr.m program is very sensitive to initial array configuration. Looking 

at Figs. 4.21 and 4.22, one can see that initial receiver position on the ground 

with respect to the flight profile makes a big difference. If the receivers are too 

far away from the profile, they will not be moved much in the optimization, 

and will likely be wasted. This means that initial arrays need to be specially 

chosen in order for this routine to work. 

2. The Monte Carlo search program is much better at finding a good receiver 

array than the constr.m program, but it cannot produce as good a final array 

as the constr.m program can in the right conditions. As Figs. 4.16-4.19 show, 

the Monte Carlo search program finds a better receiver array for the circle 

profile than the constr.m program does, for the two initial arrays used. Given 

some arbitrary initial receiver array and flight profile, it is very likely that the 
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Monte Carlo search program would always find a better receiver array. This 

does not mean that the constr.m program is never worth using, however. The 

Monte Carlo search is very good at quickly finding a good receiver array, but 

the array found may not be perfect. It may have small irregularities and may 

have receivers in poor locations due to the search order through the array. A 

better array might still exist, but it likely would take moving more than one 

receiver simultaneously to find it, so it would never be found by using this 

program. However, the constr.m program does have the capability to move 

receivers simultaneously, and has proven to be effective in improving an array 

optimized to the tolerance of the Monte Carlo program. This is shown by Figs. 

4.23 and 4.24. The resulting array in Fig. 4.24 is slightly better than the one 

in Fig. 4.23; the mean(cond(i7)) over the flight profile for the receiver array 

of Fig. 4.24 is near eleven, and that of 4.23 is near thirteen. The array in Fig. 

4.24 has regained a measure of the symmetry with respect to the flight profile 

which was lost in the Monte Carlo optimization, and provides a mean(cond(i7)) 

slightly lower than that of the array in Fig. 4.23. 

3. As was found in the single point planar array optimization problem, the best 

receiver arrays are those which have receivers directly underneath the transmit- 

ter and on the horizon at all times. Any receivers in-between those extremes do 

not contribute much to the array. This is best shown by the arrays optimized 

with respect to the circle and figure eight profiles. Note that there are a few 

receivers out away from the array, and the rest are located all along the flight 

path. This result really simplifies the design of planar arrays with respect 

to given flight profiles. It does show that the flight profile determines how 

good an array will be found, however. Therefore, the choice of flight profile is 

important. 

4. Symmetry is a characteristic of good receiver arrays. Flight profiles should be 

chosen to take advantage of this. A symmetric flight profile produces a more 

or less symmetric array, so symmetry should be a characteristic of the flight 
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profile (at least the design profile), if possible. This is where the constr.m 

program shines. It can take a good array that is asymmetric and irregular, 

and fine tune it to regain symmetry. This can lower the mean cond(i7) over 

the flight profile a couple of points, e.g., from 15 to 13, so it can be worth the 

time. 

5. The optimized arrays are good for the flight profiles they were designed for, 

but little else, unless care is taken when choosing the flight profile. A circular 

flight profile produces a circular ring of low cond(i7) at one mile. A figure eight 

profile produces a figure eight shaped region of low cond(i7) at one mile. Of 

course, one could get a better low cond(i7) region out of any of the optimized 

arrays simply by flying higher, but this may not always be desired. This is 

where the grid profile is useful. Although the array produced by using the 

grid profile in the design does not allow the cond(i7) to get as low as when 

the circle or figure eight profiles are used, any flight that spends most of its 

time above the grid will be in regions of satisfactory cond(i7). This versatility 

make the arrays designed using the grid profile (or something similar) worth 

considering. 

The results of the array optimization effort are encouraging. It is possible to 

obtain a (low) mean cond(i7) of less than twenty at altitudes of one mile or greater 

over a reasonably long flight profile (30-60 min @ 300mph) with 25 or less receivers. 

Although no globally optimum arrays were found, the optimization programs yielded 

satisfactory receiver arrays in short amounts of time. Using first the Monte Carlo 

program and then the constr.m program allows very good receiver arrays to be 

found in a matter of hours. This short optimization time allows for the possibility 

of re-configuring an array of mobile receivers to different flight profiles in reasonable 

amounts of time. If one allows the receivers to be reconfigured for every change in test 

profile, many different flight profiles can be handled by the system. One simply puts 

the new profile into the array optimizers, and out comes a satisfactory receiver array, 

if the flight profile is reasonable.  However, if the receivers cannot be made mobile, 
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some hard decisions need to be made. A fixed receiver array can be made to be 

very good for one flight profile, or can be made to be satisfactory (but not great) for 

many different profiles. The choice depends on which is more important, absolute 

accuracy or versatility. All in all, it is better to allow the receivers to be moved 

around in between flights, to allow for the possible reconfiguration of the receivers 

to handle different flight profiles with good accuracy. If this is not possible, then one 

must decide ahead of time what flight profiles desired and choose the receiver array 

configuration accordingly. If there is no reason why the minimum altitude cannot be 

raised to two or more miles, it should be done. Much money and time can be saved 

that way, without any loss of system accuracy. 
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V.   Conclusions and Recommendations 

This summarizes the results of the research to improve the accuracy of the 

SARS through receiver placement optimization, and discusses the key points of pla- 

nar receiver array design. An array design methodology which could significantly 

improve the SARS' geometry is developed. More importantly, good insights into 

the array optimization problem are provided which yield a qualitative handle on the 

problem. 

5.1     Gauging the Geometry Effects in GPS Positioning: Cond(H) vs.  GDOP 

An important result of this research is that the condition number of the H 

matrix from the pseudorange equation is a better measure of geometric sensitivity 

than the currently used GDOP metric. Although both GDOP and Cond(i7) are 

roughly linearly correlated for a fixed number of receivers, the cond(i7) is a better 

measure of geometric sensitivity than the the GDOP for three reasons. The hrst 

reason is because the cond(i7) is independent of the number of receivers but the 

GDOP is not. Using the cond(i7) as a measure of array configuration 'goodness' 

allows the geometry alone to be evaluated, regardless of the number of receivers 

in the array. The second reason is that the cond(i7) provides a maximum bound 

to the amplification of the error possible when solving the pseudorange equations 

for position. This provides a hard upper limit on error amplification, which is a 

useful quantity to have when designing a GPS like system's geometry to maximize 

accuracy. The third reason is that cond(i7) allows the sequential programming 

optimization routine to produce better arrays than if the GDOP were used. Hence, 

we used cond(i7) as a measure of the geometric effect of pseudorange measurement 

error on the GPS position hx in general, and with respect to the SARS application in 

particular. It is interesting to note that this modeling step also helps the optimization 

algorithm.    The algorithm does not have as much difficulty with convergence to 
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undesired local minima in the cost function when the optimization criterion is based 

on cond(i7), so it has a better chance of producing a useful receiver array. These 

reasons show that the condition number of the H matrix makes a more useful and 

precise measure of the impact of GPS measurement geometry on the navigation 

solution's accuracy than the commonly used GDOP metric. 

5.2    Array Optimization 

The accuracy of the SARS, or any ground based inverted GPS system, can be 

significantly improved by numerically optimizing the design of the receiver array with 

respect to the desired flight profile of the transmitter, using the optimization tools 

developed in this research: the Monte Carlo search program adapted to this prob- 

lem, and the conventional Sequential Quadratic Programming optimization using 

constr.m from the MATLAB Optimization Toolbox. This optimization yields re- 

ceiver arrays which cause regions of airspace to have reduced "GDOP." This lowers 

the sensitivity of the pseudorange equations to measurement errors, hence improving 

the accuracy of the computed position. Although the arrays designed by the opti- 

mization programs are not guaranteed to be globally optimum, they are quite good, 

providing satisfactory receiver arrays for use in the SARS. Moreover, the optimiza- 

tion tools forged in this research can be applied to any proposed receiver array so 

that an improved array ensues. 

The best results come from first running the Monte Carlo optimization program 

to get the receiver array close to the global optimum, then running the sequential 

quadratic programming routine based on constr.m to search for the local optimum. 

This procedure consistently hnds arrays that are just about as good as the design 

specifications and constraints allow, regardless of the initial array configuration input 

to the Monte Carlo search program. This composite array optimization can be 

done in four to eight hours (of unsupervised run time) on a Sparc 10 or Sparc 20 

workstation , enabling re-configuration of the receiver array for different flight profiles 
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to be done within a reasonable amount of time. Actually, moving the receivers might 

take longer, depending on the number of people in the work crew. 

5.3    Key Array Design Points 

The results of the array optimization research show that there are several key 

points in the design of receiver arrays for inverted GPS systems. These are: 

1. Fly as high as possible. The main problem with ground based arrays intended 

for use with aircraft is that most of the region of good geometry lies well 

above the maximum altitudes of most aircraft. Without adding additional 

measurements or airborne receivers, there is little that can be done about this 

problem, except fly the aircraft as high as possible. 

2. The best planar array with four receivers is three receivers on the horizon and 

one directly underneath the transmitter. Adding more receivers to the array 

will not improve the geometry, but neither will the additional receivers detract 

from the geometry, as long as the array is re-optimized for the greater num- 

ber of receivers. Optimum arrays with large numbers of receivers tend to be 

superpositions of optimum arrays with smaller numbers of receivers. This con- 

cept of superposition can be applied to the optimization problem with multiple 

transmitter points. If there are three or more receivers spaced far apart on the 

horizon and one receiver below each transmitter point on the flight profile, the 

receiver array will have very good geometry, at least at the transmitter points 

designed for. Therefore, one way of quickly coming up with a good initial array 

to feed the optimization routines is to put three receivers out at the border 

of the test range, then put the rest of the receivers, equally spaced, along the 

ground directly underneath or close to the desired flight profile. 

3. Tradeoff 1 There is a tradeoff between minimum transmitter altitude and re- 

ceiver spacing in the array.  The lower the altitudes at which the transmitter 
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will be flown, the closer together the receivers need to be in the portion of 

the array directly underneath the flight profile to produce the same cond(i7). 

Unfortunately, the good range of aircraft altitudes for a given receiver spacing 

depends on the specific receiver array and flight profile used. It varies enough 

(even between parts of the same profile) that no simple table can be given. An 

easy way to work the tradeoff is to hand-pick arrays (as discussed above) for the 

flight profile, starting with few receivers, evaluating the cond(i7) trace along 

the profile, and keep adding receivers to the projection of the flight profile on 

the ground (the ground track) until a cond(i7) trace close to being satisfactory 

is found. If this results in too many receivers being used, the flight profile 

probably needs to be modified. Possible modifications to the flight profile are 

raising the altitude range of the flight profile, making the flight shorter, or 

looping the flight back upon itself (as in a circle or figure eight). 

4. Tradeoff 2 There is a tradeoff between performance and versatility for planar 

receiver arrays. For planar arrays, generally speaking, the better an array per- 

forms for one flight profile, the worse it performs for flights that are different 

from the one it was designed for (because there need to be lots of receivers 

underneath the flight profile). This makes no difference if only one flight pro- 

file will be used, or if the receivers can be easily moved. But it does make a 

difference if it is desired for several flight profiles to be used simultaneously, or 

if the receivers cannot be moved easily. Two ways could be used to design a 

receiver array for simultaneous use with several flight profiles. The first way 

is to optimize the array with respect to a flight profile composed of all the 

desired flight profile points simply added together into one long list. For this 

to work well, the flight profiles had better have significant overlap, or many 

receivers will be needed to keep them from being spread too thin. The other 

way is to simply design for an airspace of low cond(i7) by filling a region at 

minimum altitude with evenly spaced transmitter points, like the grid profile 
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shown in chapter four. This technique will produce a contiguous, three di- 

mensional airspace of low cond(i7) that can be used for any flight profile that 

will fit within it, making room for aerobatic maneuvers that might not fit into 

arrays optimized about a single flight profile. Both techniques have their uses, 

depending on the design requirements and constraints. 

5. Altitude differences in receiver locations due to terrain do not appreciably af- 

fect the results. Optimizations run using the mountainous terrain at the White 

Sands Missile Range (2500 ft altitude differences) showed that the best receiver 

locations were invariably determined by the flight profile, not the topography. 

The topography produces a third order effect in the cond(i7). Adding sev- 

eral receivers atop 2500 foot towers to a completely planar array brought the 

cond(i7) at ground level from infinity to several hundred, but only changed the 

tenths place on the cond(i7) at one mile above the ground. For a real topog- 

raphy, the changes would be somewhat less striking. The higher the aircraft 

flies, the less important altitude variation in the receivers' locations is. In other 

words, at altitudes high enough to produce satisfactory cond(i7) traces for the 

flight profile in the hrst place, the effects of realistic altitude variations from 

terrain are insignificant. It would take gross altitude differences in receiver 

placement (miles!), to significantly improve the cond(i7) as compared to the 

completely planar array. These gross altitude differences cannot be caused by 

terrain or any kind of structure built on the ground. 

6. The masking of receivers from the transmitter line of sight does not significantly 

impact the geometric sensitivity. Line of sight (LOS) difficulties that signifi- 

cantly affect the cond(i7) have not occurred at flight altitudes of one mile or 

greater in this research. Although transmitter-receiver line of sight may be 

broken for as many as hve or six receivers out of the 25 receiver array over the 

course of the flight profile, the cond(i7) is not significantly increased. After all, 

the research has shown that one needs only three receivers on the horizon and 
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one receiver directly underneath the transmitter to have good geometry. The 

receivers that are directly underneath the transmitter will not lose LOS, and 

of the rest, only three of them are really needed to maintain good geometry. 

7. LOS can be a constraint in the optimization, but it takes so much time that 

it is better to use common sense to prevent loss of LOS. If LOS needs to be 

maintained without breaks through as much of the flight as possible for as 

many receivers as possible, precautions need to be taken. The array optimiza- 

tion programs do not take LOS into account. It was tried several times over 

the course of this research, and was found to not be worth the incredible time 

(weeks!) it took to run the optimizations. When the geometry of the arrays 

optimized with the LOS check in use proved identical to those found with- 

out considering LOS, the LOS check was discarded. Therefore, LOS may be 

considered after the fact. Fortunately, checking the LOS over a flight profile 

represented by about one hundred to two hundred points takes only several 

minutes, so an LOS check on the finished array and flight profile can be done, 

to see if either array or flight profile should be modified to prevent loss of LOS. 

Most likely, all that will be required is small changes that do not require that 

the array be re-optimized. For example, moving the receivers as much as a 

mile or so, to take advantage of local hilltops or existing buildings/towers does 

not significantly change the geometry of the array, but does allow LOS to be 

maintained much more easily. Of course, the flight profile could be chosen 

to occur over a large flat area or basin where LOS would not be a problem 

anyway, and all the difficulty would be avoided. For the SARS, the map of the 

missile range shows that there is indeed a large basin surrounded by mountains 

inside the range. Making the flight profile fly over the basin, instead of the 

mountains, would go a long way towards eliminating LOS concerns. 
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5.4    A Technique for Improving the SARS' Geometry 

The research indicates that the main difficulty with a ground based array is 

that it takes too many receivers to ensure that one is always directly underneath 

the transmitter. If this need for a receiver directly underneath the transmitter could 

be eliminated, many fewer receivers would be needed in the array to produce the 

same values of cond(i7). Also, the dependence of the array configuration on the 

flight profile would be significantly reduced, allowing more freedom in choosing flight 

profiles, and ending the necessity for array re-configuration for a different flight 

profile. This improvement can be achieved by allowing a receiver to be airborne, 

attached to a second aircraft flying directly above the test aircraft, as high as 

possible. A balloon could be used instead, but since it could not keep up with the 

test aircraft, it would need to be at an extremely high altitude. Of course, there 

appears to be one problem with this proposed scheme: the mobile receiver needs to 

have its position known very accurately in order for this technique to work. This 

problem is easily overcome by equipping both aircraft with receivers, thus achieving 

/em self calibration. In this case, one runs two flight tests simultaneously at the 

price of one flight test, the proverbial "two for one." This concept is illustrated in 

Fig. 5.1. 

Hence, the solution to this problem is to allow for the position of the mo- 

bile receiver to be found in the solution process. This is accomplished by placing 

a transmitter on the same craft as the mobile receiver (and shielding the mobile 

receiver from it). This configuration provides pseudorange measurements from both 

aircraft to the ground based receivers, and one pseudorange measurement between 

the transmitter on the first aircraft and the mobile receiver on the second aircraft 

(or balloon). The distance between the second transmitter and the mobile receiver 

(both on the same craft) is measured on the ground. Now, there are enough mea- 

surements to solve for both the position of both transmitters and the mobile receiver. 

This will dramatically improve the measurement geometry of the system, allowing 
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Test Aircraft 2 

Figure 5.1    A Technique for Improving the SARS' Geometry 

higher accuracy with fewer receivers (e.g., five or six instead of twenty five) than in 

a purely ground based array. Of course, this method requires two aircraft, but there 

is no reason that two tests could not be performed simultaneously, so it need not be 

wasteful. 

This dramatic improvement is shown by the following example. The number 

of receivers in the array are just four: one at the center and three on the border of 

the test range. The figure eight profile from Fig. 4.14 is used. One aircraft flies at 

an altitude of one mile above ground level; the other flies directly above the first 

aircraft at an altitude of four miles above ground level. 

Fig. 5.3 shows that a maximum cond(i7) of 5.6 is obtained over the course of 

the flight. This is an incredibly small number compared to the cond(i7) over the 

same flight profile for the plain SARS without the second aircraft and receiver. The 
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amount of equipment needed to attain this level of performance is two transmitters, 

two aircraft, and six receivers. 

Although the best configuration is when one aircraft is directly above the 

other, there is significant leeway in the relative positioning of the aircraft. The line 

of sight vector between the two aircraft should be as close to perfectly vertical as 

possible, to attain the best geometry, but the alignment of the aircraft can withstand 

significant variations and still provide good geometry. Figures 5.4 and 5.5 show a 

case where the aircraft at an altitude of four miles is always five miles north of the 

other aircraft. Although the geometry is not as good as the case in Fig. 5.3, it still 

is very good, much better than is possible without using both aircraft. This shows 

that significant variation in relative aircraft positioning can be handled by this self 

calibration technique. Therefore, no precision flying is needed. 

In addition, this technique allows much leeway in choosing a good flight profile. 

As long as the flight stays mostly within the triangle formed by the three receivers on 

the boundary, the geometry will be good. In theory, the pilots could fly the aircraft 

in any flight profiles they choose, as long as the aircraft stay over the test range, keep 

their altitude separation, and don't get more than five or so miles apart horizontally. 

This technique, although it requires an extra transmitter and an additional aircraft, 

solves the low altitude geometry problem for the SARS, allowing accuracy as good 

or better than from the GPS satellites to be obtained from the SARS, without strict 

constraints on the flight profile. If very accurate low altitude tests are desired, this 

method should be considered. 
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